Reputation: 12924
Can someone explain to me the reason why someone would want use bitwise comparison? example:
int f(int x) {
return x & (x-1);
}
int main(){
printf("F(10) = %d", f(10));
}
This is what I really want to know: "Why check for common set bits"
x is any positive number.
Upvotes: -1
Views: 949
Reputation: 16406
Your example tests whether x has at most 1 bit set. f
returns 0 if x is a power of 2 and non-zero if it is not.
Upvotes: 0
Reputation: 57922
Bitwise operations are used for three reasons:
You can use this for all kinds of very handy things. For example, in my database I can store a lot of true/false information about my customers in a tiny space (a single byte can store 8 different true/false facts) and then use '&' operations to query their status:
Is my customer Male and Single and a Smoker?
if (customerFlags & (maleFlag | singleFlag | smokerFlag) ==
(maleFlag | singleFlag | smokerFlag))
Is my customer (any combination of) Male Or Single Or a Smoker?
if (customerFlags & (maleFlag | singleFlag | smokerFlag) != 0)
Is my customer not Male and not Single and not a Smoker)?
if (customerFlags & (maleFlag | singleFlag | smokerFlag) == 0)
Aside from just "checking for common bits", you can also do:
Certain arithmetic, e.g. value & 15
is a much faster equivalent of value % 16
. This only works for certain numbers, but if you can use it, it can be a great optimisation.
Data packing/unpacking. e.g. a colour is often expressed as a 32-bit integer that contains Alpha, Red, Green and Blue byte values. The Red value might be extracted with an expression like red = (value >> 16) & 255;
(shift the value down 16 bit positions and then carve off the bottom byte)
Upvotes: 4
Reputation: 43472
The Ur-example is "testing if a number is even or odd":
unsigned int number = ...;
bool isOdd = (0 != (number & 1));
More complex uses include bitmasks (multiple boolean values in a single integer, each one taking up one bit of space) and encryption/hashing (which frequently involve bit shifting, XOR, etc.)
Upvotes: 1
Reputation: 386416
It's not a bitwise comparison. It doesn't return a boolean.
Bitwise operators are used to read and modify individual bits of a number.
n & 0x8 // Peek at bit3
n |= 0x8 // Set bit3
n &= ~0x8 // Clear bit3
n ^= 0x8 // Toggle bit3
Bits are used in order to save space. 8 chars takes a lot more memory than 8 bits in a char.
The following example gets the range of an IP subnet using given an IP address of the subnet and the subnet mask of the subnet.
uint32_t mask = (((255 << 8) | 255) << 8) | 255) << 8) | 255;
uint32_t ip = (((192 << 8) | 168) << 8) | 3) << 8) | 4;
uint32_t first = ip & mask;
uint32_t last = ip | ~mask;
Upvotes: 1
Reputation: 32973
I think you mean bitwise combination (in your case a bitwise AND operation). This is a very common operation in those cases where the byte, word or dword value is handled as a collection of bits, eg status information, eg in SCADA or control programs.
Upvotes: 0
Reputation: 26271
Your particular example tests if two consecutive bits in the binary representation are 1
.
Upvotes: -1
Reputation: 81986
The example you've given is kinda odd, but I'll use bitwise comparisons all the time in embedded code.
I'll often have code that looks like the following:
volatile uint32_t *flags = 0x000A000;
bool flagA = *flags & 0x1;
bool flagB = *flags & 0x2;
bool flagC = *flags & 0x4;
Upvotes: 1
Reputation: 36102
e.g. if you have a number of status flags in order to save space you may want to put each flag as a bit.
so x, if declared as a byte, would have 8 flags.
Upvotes: 0