Reputation: 1
This is my code:
# For Yolov5 command
#clone YOLOv5
!git clone https://github.com/ultralytics/yolov5 # clone repo
%cd yolov5
%pip install -qr requirements.txt # install dependencies
%pip install -q roboflow
import torch
import os
from IPython.display import Image, clear_output # to display images
print(f"Setup complete. Using torch {torch.__version__} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
For training command
!python train.py --img 597 --batch 16 --epochs 100 --data {dataset.location}/data.yaml --weights yolov5s.pt --cache
For detecting command
!python detect.py --weights runs/train/exp/weights/best.pt --img 416 --conf 0.1 --source /content/IMG-20221220-WA0031.jpg
Upvotes: 0
Views: 647
Reputation: 53
If you see the detect.py code, there are these lines (158-160):
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
n
is the number of detections for a determinate class (name[int(c)]
), which is stored in s
. You can append n
and name[int(c)]
to an array, dictionary or JSON and save it.
Upvotes: 1