Reputation: 81
I'm currently starting to use ThreadX on a STM32 Nucleo-H723ZG (STM32H723ZG MCU).
I noticed that when loading the Nx_TCP_Echo_Server / Nx_TCP_Echo_Client projects from CubeMX, the RAM gets filled up pretty much to the top, which makes me wonder, how I'm supposed to add my own code and data here.
Since I'm pretty new to RAM partitioning, RTOS and similar, I don't have a perfect feeling for what is wrong or right and how to proceed (and if it is a problem at all).
Nevertheless I wonder, if maybe using a different way of partitioning the RAM or by dropping some non-necessary code-parts, the RAM could be freed-up.
Or a different way of thinking: Since RAM_D1 got filled, but _D2, _D3 and DTCMRAM are pretty much empty, is there a way to use the free RAM for my own purposes (I would like to let SPI and ADC processing run via DMA, so this needs a place to go ....)
Hope my questions are not too confusing ;)
The system has the following amount of RAM, according to STM:
"SRAM: total 564 Kbytes all with ECC, including 128 Kbytes of data TCM RAM for critical real-time data + 432 Kbytes of system RAM (up to 256 Kbytes can remap on instruction TCM RAM for critical real time instructions) + 4 Kbytes of backup SRAM (available in the lowest-power modes)" (see STMs STM32H723ZG MCU product page)
Down below you'll find screenshots of the current RAM usage, for RAM_D1 especially .tcp_sec eats up most of the RAM.
--> Can .tcp_sec be optimized or kicked-out? If tcp means here the tcp protocol, maybe this can be a way to optimize this, since I'm not sure whether I need a handshake etc., maybe UDP is sufficient (and faster for the ADC data streaming) ... what do you say?
Edit: The linker-file shows, that there .tcp_sec (NOLOAD) is written ... is NOLOAD maybe a hint on a "placebo" RAM occupation (pre-allocation / reservation, but no actual usage?)
Linker-script extract:
/* User_heap_stack section, used to check that there is enough RAM left */
._user_heap_stack :
{
. = ALIGN(8);
PROVIDE ( end = . );
PROVIDE ( _end = . );
. = . + _Min_Heap_Size;
. = . + _Min_Stack_Size;
. = ALIGN(8);
} >RAM_D1
.tcp_sec (NOLOAD) : {
. = ABSOLUTE(0x24048000);
*(.RxDecripSection)
. = ABSOLUTE(0x24048060);
*(.TxDecripSection)
} >RAM_D1 AT> FLASH
For context: I am developing a "system controller", where my plan is to have it running a RTOS, which manages the read-in of analog values, writing control messages via SPI to two other STMs of the same kind and communicating via Ethernet to my desktop application.
The desktop application is then in charge of post-processing the digitized analog values and sending control messages to the system controller. In the best case the system controller digitizes the analog signal on ADC3 with 5 MSPS (at probably 6 Bit resolution = 30 MBit/s) and sends that data hickup-free to my desktop application.
-> Is this plan possible on this MCU?
I tried to buy a higher (more RAM) version of the nucleo I've got, but due to shortages this one is the best one I was able to get.
For the RTOS I'd like to stick with ThreadX, since FreeRTOS support in STM32IDE seems to be phased out now, after ThreadX was employed as the RTOS by STM. (I like the easy register configuration using CubeMX/STM32 IDE, hence my drive to use that SW universe ... if there are good reasons to use a different RTOS, tell me :) )
Thank you for your time!
Upvotes: 1
Views: 482
Reputation: 51
I generated the same project on my side and took a look. I believe you should be able to implement what you want in this CPU. You will need to carefully use the available memory.
It seems there is a confusion about the section .tcp_sec. It contains DMA reception and transmission descriptors for the Ethernet controller/driver. These are constrained by the driver and hardware to be at a specific address. The descriptors are rather small, but the buffers are bigger. With some work these can be reduced. If you are using Ethernet you will need this, no mater if you use TCP or not. As I said, the name can be confusing.
The flash has still plenty of space available. In the debug configuration only about 11% is used. The rest is available for your application code.
You can locate you data in other memory regions. Depending on the toolchain you will use is how you will need to tell the compiler/linker where your data goes. You can look towards the top of the main.c file in that example to see how the DMA descriptors are assigned to a specific section for three different toolchains (IAR, ARM MDK, GCC).
In terms of how to most efficiently use and configure the microcontroller peripherals please get in touch with STMicro, they will know best.
This should get you started. Let us know if this helps!
Upvotes: 1