Reputation: 15
Doing some basic disassembly and have noticed that the buffer is being given additional buffer space for some reason although what i am looking at in a tutorial uses the same code but is only given the correct (500) chars in length. Why is this?
My code:
#include <stdio.h>
#include <string.h>
int main (int argc, char** argv){
char buffer[500];
strcpy(buffer, argv[1]);
return 0;
}
compiled with GCC, the dissembled code is:
0x0000000000001139 <+0>: push %rbp
0x000000000000113a <+1>: mov %rsp,%rbp
0x000000000000113d <+4>: sub $0x210,%rsp
0x0000000000001144 <+11>: mov %edi,-0x204(%rbp)
0x000000000000114a <+17>: mov %rsi,-0x210(%rbp)
0x0000000000001151 <+24>: mov -0x210(%rbp),%rax
0x0000000000001158 <+31>: add $0x8,%rax
0x000000000000115c <+35>: mov (%rax),%rdx
0x000000000000115f <+38>: lea -0x200(%rbp),%rax
0x0000000000001166 <+45>: mov %rdx,%rsi
0x0000000000001169 <+48>: mov %rax,%rdi
0x000000000000116c <+51>: call 0x1030 <strcpy@plt>
0x0000000000001171 <+56>: mov $0x0,%eax
0x0000000000001176 <+61>: leave
0x0000000000001177 <+62>: ret
However, this video https://www.youtube.com/watch?v=1S0aBV-Waeo
clearly only has 500 bytes assigned
Why is this this the case as the only difference I can see here is one is 32-bit and another (mine) is on x86-64.
Upvotes: 1
Views: 457
Reputation: 140540
500 is not a multiple of 16.
The x86-64 ABI (application binary interface) requires the stack pointer to be a multiple of 16 whenever a call
instruction is about to happen. (Since call
pushes an 8-byte return address, this means the stack pointer is always congruent to 8, mod 16, when control reaches the first instruction of a called function.) For the code shown, it is convenient for the compiler to achieve this requirement by increasing the value it uses in the sub
instruction, making it be a multiple of 16.
The x86-32 ABI did not make this requirement, so there was no reason for the compiler used in the video to increase the size of the stack frame.
Note that you appear to have compiled your code without optimization. I get this at -O2:
0x0000000000000000 <+0>: sub $0x208,%rsp
0x0000000000000007 <+7>: mov 0x8(%rsi),%rsi
0x000000000000000b <+11>: mov %rsp,%rdi
0x000000000000000e <+14>: call <strcpy@PLT>
0x0000000000000013 <+19>: xor %eax,%eax
0x0000000000000015 <+21>: add $0x208,%rsp
0x000000000000001c <+28>: ret
The stack adjustment is still somewhat larger than the size of the array, but not as big as what you had, and no longer a multiple of 16; the difference is that with optimization on, the frame pointer is eliminated, so %rbp does not need to be saved and restored, and so the stack pointer is not a multiple of 16 at the point of the sub
instruction.
(Incidentally, there is no requirement anywhere for a stack frame to be as small as possible. "Quality of implementation" dictates that it should be as small as possible, but for various reasons it's quite common for the compiler to miss that target. In my optimized code dump, I don't see any reason why the immediate operand to sub
and add
couldn't have been 0x1f8 (504).
Upvotes: 5