Reputation: 13
I am trying to copy an np array to the GPU using TensorRT in Python but I keep getting the error 'cuMemcpyHtoDAsync failed: invalid argument'. The array has the correct format (float32) and size, but the error remains. Does anyone have an idea of what I am doing wrong or how I can fix this error?
import tensorrt as trt
import pycuda.driver as cuda
import numpy as np
import cv2
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
cuda.init()
device = cuda.Device(0)
ctx = device.make_context()
stream = cuda.Stream()
# stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to the appropriate list.
if engine.binding_is_input(binding):
inputs.append(host_mem)
else:
outputs.append(host_mem)
return inputs, outputs, bindings, stream
def do_inference(context, bindings, inputs, outputs, stream):
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp, i, stream) for inp, i in zip(bindings[:len(inputs)], inputs)]
# Run inference.
context.execute_async(bindings=bindings, stream_handle=stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out, o, stream) for out, o in zip(outputs, bindings[len(inputs):])]
# Synchronize the stream
stream.synchronize()
def detect_objects(image, engine, context, threshold=0.5):
# Preprocess the image
image = cv2.resize(image, (640, 640))
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0)
# Allocate buffers
inputs, outputs, bindings, stream = allocate_buffers(engine)
#inputs[0] = np.ascontiguousarray(image)
inputs[0] = np.ascontiguousarray(image, dtype=np.float32) / 255.0
print(inputs[0].shape)
print(inputs[0].dtype)
# Run inference
do_inference(context, bindings, inputs, outputs, stream)
# Postprocess the outputs
outputs = outputs[0]
outputs = outputs[outputs[:, 0] > threshold]
# Get the bounding boxes
boxes = outputs[:, 1:]
return boxes
# Load the engine
engine = trt.Runtime(trt.Logger(trt.Logger.WARNING)).deserialize_cuda_engine(open("Modelle/best.engine", "rb").read())
context = engine.create_execution_context()
# Read the image
image = cv2.imread("Test.jpg")
# Detect objects in the image
boxes = detect_objects(image, engine, context)
print (boxes)
or am I doing something fundamentally wrong when loading the tensorRT file? Is there another way to index an object on an image?
Thanks
Upvotes: 0
Views: 500
Reputation: 179
This seems to be an alignment, size issue.
If you use cuda.mem_alloc_alike
, cuda.memcpy_htod_async
no longer fails.
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc_like(host_mem)
Upvotes: 0