Reputation: 4102
The problem is that emmeans gives an error when evaluating an averaging object form the MuMIn package, even when it says it should in this link I have been trying to debug this for a couple of days with no luck. All data and code is in this repo
first we load the needed r packages and the dataset
library(emmeans)
library(lme4)
#;-) Loading required package: Matrix
library(MuMIn)
library(doParallel)
#;-) Loading required package: foreach
#;-) Loading required package: iterators
#;-) Loading required package: parallel
Data <- readRDS("Data.rds")
If you dont want to download the data you can use this
Data <- structure(list(richness = c(25L, 24L, 14L, 13L, 11L, 16L, 10L,
27L, 31L, 34L, 20L, 25L, 23L, 8L, 10L, 7L, 9L, 13L, 15L, 23L,
22L, 20L, 22L, 15L, 35L, 18L, 15L, 36L, 29L, 35L, 32L, 24L, 22L,
18L, 14L, 17L, 22L, 34L, 30L, 15L, 17L, 23L, 24L, 6L, 9L, 10L,
8L, 4L, 5L, 21L, 24L, 17L, 11L, 13L, 13L, 11L, 25L, 20L, 21L,
9L, 20L, 16L, 7L, 9L, 6L, 8L, 11L, 12L, 16L, 19L, 13L, 15L, 14L,
22L, 8L, 6L, 23L, 17L, 27L, 31L, 12L, 12L, 15L, 15L, 10L, 13L,
29L, 32L, 14L, 12L, 20L, 22L, 6L, 8L, 9L, 5L, 3L, 4L, 14L, 31L,
19L, 11L, 13L, 17L, 12L, 21L, 16L, 21L, 24L, 15L, 14L, 10L, 10L,
11L, 13L, 12L, 18L, 17L, 14L, 17L, 11L, 17L, 24L, 14L, 7L, 29L,
27L, 31L, 37L, 17L, 17L, 14L, 12L, 26L, 21L, 27L, 19L, 17L, 11L,
20L, 17L, 6L, 11L, 11L, 6L, 3L, 5L, 24L, 20L, 17L, 14L, 15L,
12L, 11L, 21L, 21L, 18L, 11L, 26L, 15L, 10L, 9L, 8L, 9L, 13L,
17L, 6L, 12L, 19L, 9L, 20L, 15L, 9L, 10L, 30L, 26L, 39L, 31L,
18L, 20L, 16L, 11L, 27L, 22L, 29L, 21L, 17L, 14L, 27L, 17L, 5L,
7L, 10L, 6L, 2L, 4L, 25L, 18L, 19L, 12L, 12L, 14L, 16L, 26L,
15L, 24L, 11L, 26L, 21L, 10L, 8L, 7L, 8L, 10L, 14L, 8L, 10L,
13L, 14L, 15L, 14L, 13L, 9L, 34L, 26L, 41L, 27L, 16L, 17L, 14L,
26L, 18L, 29L, 17L, 19L, 13L, 22L, 19L, 8L, 7L, 8L, 7L, 2L, 5L
), aspect = c(200, 186, 138, 152, 158, 326, 332, 150, 151, 126,
63, 110, 180, 302, 12, 164, 146, 32, 212, 152, 160, 124, 11,
102, 60, 180, 129, 89, 92, 100, 260, 94, 100, 0, 0, 0, 0, 156,
101, 0, 0, 0, 0, 82, 152, 164, 268, 116, 268, 200, 186, 138,
152, 158, 326, 332, 150, 151, 126, 63, 110, 180, 302, 12, 164,
146, 32, 212, 152, 160, 124, 11, 102, 60, 180, 129, 89, 92, 100,
260, 94, 100, 0, 0, 0, 0, 156, 101, 0, 0, 0, 0, 82, 152, 164,
268, 116, 268, 200, 186, 138, 152, 158, 326, 332, 150, 151, 126,
63, 110, 180, 302, 12, 164, 146, 32, 212, 152, 160, 124, 11,
102, 60, 180, 129, 89, 92, 100, 260, 94, 100, 0, 0, 0, 0, 156,
101, 0, 0, 0, 0, 82, 152, 164, 268, 116, 268, 200, 186, 138,
152, 158, 326, 332, 150, 151, 126, 63, 110, 180, 302, 12, 164,
146, 32, 212, 152, 160, 124, 11, 102, 60, 180, 129, 89, 92, 100,
260, 94, 100, 0, 0, 0, 0, 156, 101, 0, 0, 0, 0, 82, 152, 164,
268, 116, 268, 200, 186, 138, 152, 158, 326, 332, 150, 151, 126,
63, 110, 180, 302, 12, 164, 146, 32, 212, 152, 160, 124, 11,
102, 60, 180, 129, 89, 92, 100, 260, 94, 100, 0, 0, 0, 156, 101,
0, 0, 0, 0, 82, 152, 164, 268, 116, 268), elevation = c(59.639,
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861,
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344,
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974,
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711,
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953,
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639,
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861,
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344,
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974,
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711,
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953,
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639,
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861,
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344,
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974,
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711,
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953,
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639,
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861,
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344,
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974,
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711,
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953,
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639,
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861,
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344,
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974,
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711,
3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953, 3.106,
4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563), initial_habitat = c("Rangeland",
"Rangeland", "Forest", "Forest", "Forest", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Forest", "Forest", "Forest", "Forest", "Forest",
"Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Meadow", "Meadow", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Meadow", "Meadow", "Meadow", "Meadow", "Forest", "Forest", "Forest",
"Forest", "Forest", "Forest", "Rangeland", "Rangeland", "Forest",
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Forest",
"Forest", "Forest", "Forest", "Forest", "Forest", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Meadow",
"Meadow", "Forest", "Forest", "Forest", "Forest", "Forest", "Forest",
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Forest",
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Meadow", "Meadow", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Meadow", "Meadow", "Meadow", "Meadow", "Forest", "Forest", "Forest",
"Forest", "Forest", "Forest", "Rangeland", "Rangeland", "Forest",
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Forest",
"Forest", "Forest", "Forest", "Forest", "Forest", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Meadow",
"Meadow", "Forest", "Forest", "Forest", "Forest", "Forest", "Forest",
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Forest",
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Meadow", "Rangeland", "Rangeland", "Rangeland", "Rangeland",
"Meadow", "Meadow", "Meadow", "Meadow", "Forest", "Forest", "Forest",
"Forest", "Forest", "Forest"), year = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4), slope = c(5, 4, 20, 16, 10, 12, 16, 8, 11,
1, 5, 8, 8, 4, 10, 8, 8, 12, 6, 16, 21, 4, 1.5, 4, 5, 1, 2, 11,
10, 8, 1, 8, 8, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 6, 4, 2, 1, 2,
6, 5, 4, 20, 16, 10, 12, 16, 8, 11, 1, 5, 8, 8, 4, 10, 8, 8,
12, 6, 16, 21, 4, 1.5, 4, 5, 1, 2, 11, 10, 8, 1, 8, 8, 0, 0,
0, 0, 4, 6, 0, 0, 0, 0, 6, 4, 2, 1, 2, 6, 5, 4, 20, 16, 10, 12,
16, 8, 11, 1, 5, 8, 8, 4, 10, 8, 8, 12, 6, 16, 21, 4, 1.5, 4,
5, 1, 2, 11, 10, 8, 1, 8, 8, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 6,
4, 2, 1, 2, 6, 5, 4, 20, 16, 10, 12, 16, 8, 11, 1, 5, 8, 8, 4,
10, 8, 8, 12, 6, 16, 21, 4, 1.5, 4, 5, 1, 2, 11, 10, 8, 1, 8,
8, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 6, 4, 2, 1, 2, 6, 5, 4, 20,
16, 10, 12, 16, 8, 11, 1, 5, 8, 8, 4, 10, 8, 8, 12, 6, 16, 21,
4, 1.5, 4, 5, 1, 2, 11, 10, 8, 1, 8, 8, 0, 0, 0, 4, 6, 0, 0,
0, 0, 6, 4, 2, 1, 2, 6), treatment = structure(c(2L, 1L, 2L,
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
1L), levels = c("PermanentExclosure", "Control"), class = "factor"),
block_no = structure(c(3L, 3L, 4L, 4L, 4L, 5L, 5L, 6L, 6L,
7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 1L, 1L, 11L, 11L,
12L, 12L, 2L, 2L, 13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L,
17L, 17L, 18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 21L, 22L,
22L, 22L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L,
8L, 9L, 9L, 9L, 10L, 10L, 10L, 1L, 1L, 11L, 11L, 12L, 12L,
2L, 2L, 13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L,
18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 21L, 22L, 22L, 22L,
3L, 3L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L,
9L, 10L, 10L, 10L, 1L, 1L, 11L, 11L, 12L, 12L, 2L, 2L, 13L,
13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L, 18L, 18L, 19L,
19L, 20L, 20L, 21L, 21L, 21L, 22L, 22L, 22L, 3L, 3L, 4L,
4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L,
10L, 10L, 1L, 1L, 11L, 11L, 12L, 12L, 2L, 2L, 13L, 13L, 14L,
14L, 15L, 15L, 16L, 16L, 17L, 17L, 18L, 18L, 19L, 19L, 20L,
20L, 21L, 21L, 21L, 22L, 22L, 22L, 3L, 3L, 4L, 4L, 4L, 5L,
5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 1L,
1L, 11L, 11L, 12L, 12L, 2L, 2L, 13L, 13L, 14L, 14L, 15L,
15L, 16L, 17L, 17L, 18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L,
21L, 22L, 22L, 22L), levels = c("5", "6", "13", "15", "28",
"36", "37", "42", "46", "47", "54", "55", "60", "61", "62",
"69", "70", "74", "85", "95", "96", "97"), class = "factor")), row.names = c(NA,
-244L), class = c("tbl_df", "tbl", "data.frame"))
Now we fit a general model:
Model <- glmer(richness ~ aspect + elevation +
initial_habitat +
I(abs(year - 1)) +
I((year - 1)^2) +
slope +
treatment:initial_habitat +
year:initial_habitat +
year:treatment +
year:treatment:initial_habitat +
(1 | block_no), family = poisson, data = Data, control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)))
And we make a model selection (skip this step since it takes a while, the “SelectRichness.rds” file is in this github)
options(na.action = "na.fail")
library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)
clusterEvalQ(cl, library(lme4))
#;-) [[1]]
#;-) [1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
#;-) [7] "datasets" "methods" "base"
#;-)
#;-) [[2]]
#;-) [1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
#;-) [7] "datasets" "methods" "base"
#;-)
#;-) [[3]]
#;-) [1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
#;-) [7] "datasets" "methods" "base"
#;-)
#;-) [[4]]
#;-) [1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
#;-) [7] "datasets" "methods" "base"
clusterExport(cl, "Data")
Select <- MuMIn::pdredge(Model, extra = list(R2m = function(x) r.squaredGLMM(x)[1, 1], R2c = function(x) r.squaredGLMM(x)[1, 2]), fixed = ~ YEAR:Treatment, cluster = cl)
stopCluster(cl)
saveRDS(Select, "SelectRichness.rds")
And now we Select the best models, I will do this twice, since the outcome of the subset
function will be used to show how the best model does not have issues and the averaged model from get.models
which is the result I need is not working
Select <- readRDS("SelectRichness.rds")
Selected <- subset(Select, delta < 2)
SelectedList <- get.models(Select, delta < 2)
As specified above the goal is to find if the treatments do yieald differences by year 4, based on the model. So first we will show this with the best model
BestModel <- get.models(Selected, 1)[[1]]
noise.emm <- emmeans(BestModel, pairwise ~ year + initial_habitat + initial_habitat:year + year:treatment, at = list(year = 4), data = Data)
pairs(noise.emm, simple = "treatment") |>
as.data.frame() |>
dplyr::filter(p.value < 0.05) |>
dplyr::arrange(initial_habitat, estimate) |>
dplyr::select(-SE, -df, -z.ratio) |>
knitr::kable()
contrast | year | initial_habitat | estimate | p.value |
---|---|---|---|---|
PermanentExclosure - Control | 4 | Forest | -0.2193592 | 3.06e-05 |
PermanentExclosure - Control | 4 | Meadow | -0.2193592 | 3.06e-05 |
PermanentExclosure - Control | 4 | Rangeland | -0.2193592 | 3.06e-05 |
This does not work
AV <- model.avg(SelectedList, fit = TRUE)
noise.emm_av <- emmeans(AV, pairwise ~ year + initial_habitat + initial_habitat:year + year:treatment, at = list(year = 4), data = Data)
#;-) Error in (mth$objs[[1]])(object, trms, xlev, grid, ...): Unable to match model terms
Standard output and standard error
-- nothing to show --
Session info
sessioninfo::session_info()
#;-) ─ Session info ───────────────────────────────────────────────────────────────
#;-) setting value
#;-) version R version 4.2.2 Patched (2022-11-10 r83330)
#;-) os Ubuntu 20.04.5 LTS
#;-) system x86_64, linux-gnu
#;-) ui X11
#;-) language en_US:en
#;-) collate en_US.UTF-8
#;-) ctype en_US.UTF-8
#;-) tz Europe/Copenhagen
#;-) date 2023-02-21
#;-) pandoc 2.19.2 @ /usr/lib/rstudio/bin/quarto/bin/tools/ (via rmarkdown)
#;-)
#;-) ─ Packages ───────────────────────────────────────────────────────────────────
#;-) package * version date (UTC) lib source
#;-) boot 1.3-28 2021-05-03 [4] CRAN (R 4.0.5)
#;-) cli 3.6.0 2023-01-09 [1] CRAN (R 4.2.2)
#;-) coda 0.19-4 2020-09-30 [3] CRAN (R 4.0.2)
#;-) codetools 0.2-19 2023-02-01 [4] CRAN (R 4.2.2)
#;-) digest 0.6.31 2022-12-11 [1] CRAN (R 4.2.2)
#;-) doParallel * 1.0.17 2022-02-07 [1] CRAN (R 4.2.1)
#;-) dplyr 1.1.0 2023-01-29 [1] CRAN (R 4.2.2)
#;-) emmeans * 1.8.4-1 2023-01-17 [1] CRAN (R 4.2.2)
#;-) estimability 1.4.1 2022-08-05 [1] CRAN (R 4.2.1)
#;-) evaluate 0.20 2023-01-17 [1] CRAN (R 4.2.2)
#;-) fansi 1.0.4 2023-01-22 [3] CRAN (R 4.2.2)
#;-) fastmap 1.1.0 2021-01-25 [3] CRAN (R 4.0.3)
#;-) foreach * 1.5.2 2022-02-02 [1] CRAN (R 4.2.1)
#;-) fs 1.6.1 2023-02-06 [3] CRAN (R 4.2.2)
#;-) generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)
#;-) glue 1.6.2 2022-02-24 [3] CRAN (R 4.1.2)
#;-) htmltools 0.5.4 2022-12-07 [1] CRAN (R 4.2.2)
#;-) iterators * 1.0.14 2022-02-05 [1] CRAN (R 4.2.1)
#;-) knitr 1.42 2023-01-25 [1] CRAN (R 4.2.2)
#;-) lattice 0.20-45 2021-09-22 [4] CRAN (R 4.2.0)
#;-) lifecycle 1.0.3 2022-10-07 [3] CRAN (R 4.2.1)
#;-) lme4 * 1.1-31 2022-11-01 [1] CRAN (R 4.2.2)
#;-) magrittr 2.0.3 2022-03-30 [3] CRAN (R 4.1.3)
#;-) MASS 7.3-58.2 2023-01-23 [4] CRAN (R 4.2.2)
#;-) Matrix * 1.5-3 2022-11-11 [4] CRAN (R 4.2.2)
#;-) minqa 1.2.5 2022-10-19 [3] CRAN (R 4.2.1)
#;-) multcomp 1.4-20 2022-08-07 [1] CRAN (R 4.2.1)
#;-) MuMIn * 1.47.1 2022-09-01 [1] CRAN (R 4.2.2)
#;-) mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.1)
#;-) nlme 3.1-162 2023-01-31 [4] CRAN (R 4.2.2)
#;-) nloptr 2.0.3 2022-05-26 [3] CRAN (R 4.2.0)
#;-) pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.1)
#;-) pkgconfig 2.0.3 2019-09-22 [3] CRAN (R 4.0.0)
#;-) purrr 1.0.1 2023-01-10 [1] CRAN (R 4.2.2)
#;-) R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.1)
#;-) R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.1)
#;-) R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.1)
#;-) R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.2.2)
#;-) R6 2.5.1 2021-08-19 [3] CRAN (R 4.1.1)
#;-) Rcpp 1.0.10 2023-01-22 [3] CRAN (R 4.2.2)
#;-) reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.2)
#;-) rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.1)
#;-) rmarkdown 2.20 2023-01-19 [1] CRAN (R 4.2.2)
#;-) rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.1)
#;-) sandwich 3.0-2 2022-06-15 [1] CRAN (R 4.2.1)
#;-) sessioninfo 1.2.2 2021-12-06 [3] CRAN (R 4.1.2)
#;-) styler 1.8.1 2022-11-07 [1] CRAN (R 4.2.2)
#;-) survival 3.5-3 2023-02-12 [4] CRAN (R 4.2.2)
#;-) TH.data 1.1-1 2022-04-26 [1] CRAN (R 4.2.1)
#;-) tibble 3.1.8 2022-07-22 [1] CRAN (R 4.2.1)
#;-) tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.1)
#;-) utf8 1.2.3 2023-01-31 [3] CRAN (R 4.2.2)
#;-) vctrs 0.5.2 2023-01-23 [1] CRAN (R 4.2.2)
#;-) withr 2.5.0 2022-03-03 [3] CRAN (R 4.1.3)
#;-) xfun 0.37 2023-01-31 [1] CRAN (R 4.2.2)
#;-) xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
#;-) yaml 2.3.7 2023-01-23 [3] CRAN (R 4.2.2)
#;-) zoo 1.8-11 2022-09-17 [1] CRAN (R 4.2.1)
#;-)
#;-) [1] /home/au687614/R/x86_64-pc-linux-gnu-library/4.2
#;-) [2] /usr/local/lib/R/site-library
#;-) [3] /usr/lib/R/site-library
#;-) [4] /usr/lib/R/library
#;-)
#;-) ──────────────────────────────────────────────────────────────────────────────
Upvotes: 0
Views: 124