Derek Corcoran
Derek Corcoran

Reputation: 4102

Error in emmeans for averaging object (mth$objs[[1]])(object, trms, xlev, grid, ...): Unable to match model terms

emmeans can't evaluate averaging object

The problem is that emmeans gives an error when evaluating an averaging object form the MuMIn package, even when it says it should in this link I have been trying to debug this for a couple of days with no luck. All data and code is in this repo

first we load the needed r packages and the dataset

library(emmeans)
library(lme4)
#;-) Loading required package: Matrix
library(MuMIn)
library(doParallel)
#;-) Loading required package: foreach
#;-) Loading required package: iterators
#;-) Loading required package: parallel

Data <- readRDS("Data.rds")

If you dont want to download the data you can use this

Data <- structure(list(richness = c(25L, 24L, 14L, 13L, 11L, 16L, 10L, 
27L, 31L, 34L, 20L, 25L, 23L, 8L, 10L, 7L, 9L, 13L, 15L, 23L, 
22L, 20L, 22L, 15L, 35L, 18L, 15L, 36L, 29L, 35L, 32L, 24L, 22L, 
18L, 14L, 17L, 22L, 34L, 30L, 15L, 17L, 23L, 24L, 6L, 9L, 10L, 
8L, 4L, 5L, 21L, 24L, 17L, 11L, 13L, 13L, 11L, 25L, 20L, 21L, 
9L, 20L, 16L, 7L, 9L, 6L, 8L, 11L, 12L, 16L, 19L, 13L, 15L, 14L, 
22L, 8L, 6L, 23L, 17L, 27L, 31L, 12L, 12L, 15L, 15L, 10L, 13L, 
29L, 32L, 14L, 12L, 20L, 22L, 6L, 8L, 9L, 5L, 3L, 4L, 14L, 31L, 
19L, 11L, 13L, 17L, 12L, 21L, 16L, 21L, 24L, 15L, 14L, 10L, 10L, 
11L, 13L, 12L, 18L, 17L, 14L, 17L, 11L, 17L, 24L, 14L, 7L, 29L, 
27L, 31L, 37L, 17L, 17L, 14L, 12L, 26L, 21L, 27L, 19L, 17L, 11L, 
20L, 17L, 6L, 11L, 11L, 6L, 3L, 5L, 24L, 20L, 17L, 14L, 15L, 
12L, 11L, 21L, 21L, 18L, 11L, 26L, 15L, 10L, 9L, 8L, 9L, 13L, 
17L, 6L, 12L, 19L, 9L, 20L, 15L, 9L, 10L, 30L, 26L, 39L, 31L, 
18L, 20L, 16L, 11L, 27L, 22L, 29L, 21L, 17L, 14L, 27L, 17L, 5L, 
7L, 10L, 6L, 2L, 4L, 25L, 18L, 19L, 12L, 12L, 14L, 16L, 26L, 
15L, 24L, 11L, 26L, 21L, 10L, 8L, 7L, 8L, 10L, 14L, 8L, 10L, 
13L, 14L, 15L, 14L, 13L, 9L, 34L, 26L, 41L, 27L, 16L, 17L, 14L, 
26L, 18L, 29L, 17L, 19L, 13L, 22L, 19L, 8L, 7L, 8L, 7L, 2L, 5L
), aspect = c(200, 186, 138, 152, 158, 326, 332, 150, 151, 126, 
63, 110, 180, 302, 12, 164, 146, 32, 212, 152, 160, 124, 11, 
102, 60, 180, 129, 89, 92, 100, 260, 94, 100, 0, 0, 0, 0, 156, 
101, 0, 0, 0, 0, 82, 152, 164, 268, 116, 268, 200, 186, 138, 
152, 158, 326, 332, 150, 151, 126, 63, 110, 180, 302, 12, 164, 
146, 32, 212, 152, 160, 124, 11, 102, 60, 180, 129, 89, 92, 100, 
260, 94, 100, 0, 0, 0, 0, 156, 101, 0, 0, 0, 0, 82, 152, 164, 
268, 116, 268, 200, 186, 138, 152, 158, 326, 332, 150, 151, 126, 
63, 110, 180, 302, 12, 164, 146, 32, 212, 152, 160, 124, 11, 
102, 60, 180, 129, 89, 92, 100, 260, 94, 100, 0, 0, 0, 0, 156, 
101, 0, 0, 0, 0, 82, 152, 164, 268, 116, 268, 200, 186, 138, 
152, 158, 326, 332, 150, 151, 126, 63, 110, 180, 302, 12, 164, 
146, 32, 212, 152, 160, 124, 11, 102, 60, 180, 129, 89, 92, 100, 
260, 94, 100, 0, 0, 0, 0, 156, 101, 0, 0, 0, 0, 82, 152, 164, 
268, 116, 268, 200, 186, 138, 152, 158, 326, 332, 150, 151, 126, 
63, 110, 180, 302, 12, 164, 146, 32, 212, 152, 160, 124, 11, 
102, 60, 180, 129, 89, 92, 100, 260, 94, 100, 0, 0, 0, 156, 101, 
0, 0, 0, 0, 82, 152, 164, 268, 116, 268), elevation = c(59.639, 
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861, 
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344, 
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974, 
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711, 
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953, 
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639, 
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861, 
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344, 
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974, 
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711, 
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953, 
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639, 
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861, 
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344, 
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974, 
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711, 
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953, 
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639, 
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861, 
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344, 
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974, 
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711, 
3.256, 3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953, 
3.106, 4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563, 59.639, 
60.455, 49.532, 50.521, 52.628, 41.467, 39.91, 52.057, 55.861, 
61.056, 60.571, 38.707, 40.645, 25.855, 32.852, 30.79, 26.7344, 
25.8817, 27.277, 63.331, 62.715, 72.395, 74.567, 70.733, 68.974, 
62.814, 62.708, 48.962, 49.978, 50.261, 49.805, 47.82, 46.711, 
3.197, 3.109, 3.209, 59.102, 59.51, 3.024, 2.971, 2.953, 3.106, 
4.612, 2.43366667, 15.355, 2.091, 4.573, 4.563), initial_habitat = c("Rangeland", 
"Rangeland", "Forest", "Forest", "Forest", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Forest", "Forest", "Forest", "Forest", "Forest", 
"Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Meadow", "Meadow", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Meadow", "Meadow", "Meadow", "Meadow", "Forest", "Forest", "Forest", 
"Forest", "Forest", "Forest", "Rangeland", "Rangeland", "Forest", 
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Forest", 
"Forest", "Forest", "Forest", "Forest", "Forest", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Meadow", 
"Meadow", "Forest", "Forest", "Forest", "Forest", "Forest", "Forest", 
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Forest", 
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Meadow", "Meadow", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Meadow", "Meadow", "Meadow", "Meadow", "Forest", "Forest", "Forest", 
"Forest", "Forest", "Forest", "Rangeland", "Rangeland", "Forest", 
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Forest", 
"Forest", "Forest", "Forest", "Forest", "Forest", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Meadow", "Meadow", "Meadow", 
"Meadow", "Forest", "Forest", "Forest", "Forest", "Forest", "Forest", 
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Forest", "Forest", "Forest", "Forest", 
"Forest", "Forest", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Rangeland", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Meadow", "Rangeland", "Rangeland", "Rangeland", "Rangeland", 
"Meadow", "Meadow", "Meadow", "Meadow", "Forest", "Forest", "Forest", 
"Forest", "Forest", "Forest"), year = c(0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
4, 4, 4, 4, 4, 4), slope = c(5, 4, 20, 16, 10, 12, 16, 8, 11, 
1, 5, 8, 8, 4, 10, 8, 8, 12, 6, 16, 21, 4, 1.5, 4, 5, 1, 2, 11, 
10, 8, 1, 8, 8, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 6, 4, 2, 1, 2, 
6, 5, 4, 20, 16, 10, 12, 16, 8, 11, 1, 5, 8, 8, 4, 10, 8, 8, 
12, 6, 16, 21, 4, 1.5, 4, 5, 1, 2, 11, 10, 8, 1, 8, 8, 0, 0, 
0, 0, 4, 6, 0, 0, 0, 0, 6, 4, 2, 1, 2, 6, 5, 4, 20, 16, 10, 12, 
16, 8, 11, 1, 5, 8, 8, 4, 10, 8, 8, 12, 6, 16, 21, 4, 1.5, 4, 
5, 1, 2, 11, 10, 8, 1, 8, 8, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 6, 
4, 2, 1, 2, 6, 5, 4, 20, 16, 10, 12, 16, 8, 11, 1, 5, 8, 8, 4, 
10, 8, 8, 12, 6, 16, 21, 4, 1.5, 4, 5, 1, 2, 11, 10, 8, 1, 8, 
8, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 6, 4, 2, 1, 2, 6, 5, 4, 20, 
16, 10, 12, 16, 8, 11, 1, 5, 8, 8, 4, 10, 8, 8, 12, 6, 16, 21, 
4, 1.5, 4, 5, 1, 2, 11, 10, 8, 1, 8, 8, 0, 0, 0, 4, 6, 0, 0, 
0, 0, 6, 4, 2, 1, 2, 6), treatment = structure(c(2L, 1L, 2L, 
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 
1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 
2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 
1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 
1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 
2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 
1L), levels = c("PermanentExclosure", "Control"), class = "factor"), 
    block_no = structure(c(3L, 3L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 
    7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 1L, 1L, 11L, 11L, 
    12L, 12L, 2L, 2L, 13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 
    17L, 17L, 18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 21L, 22L, 
    22L, 22L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 
    8L, 9L, 9L, 9L, 10L, 10L, 10L, 1L, 1L, 11L, 11L, 12L, 12L, 
    2L, 2L, 13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L, 
    18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 21L, 22L, 22L, 22L, 
    3L, 3L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 
    9L, 10L, 10L, 10L, 1L, 1L, 11L, 11L, 12L, 12L, 2L, 2L, 13L, 
    13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L, 18L, 18L, 19L, 
    19L, 20L, 20L, 21L, 21L, 21L, 22L, 22L, 22L, 3L, 3L, 4L, 
    4L, 4L, 5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L, 
    10L, 10L, 1L, 1L, 11L, 11L, 12L, 12L, 2L, 2L, 13L, 13L, 14L, 
    14L, 15L, 15L, 16L, 16L, 17L, 17L, 18L, 18L, 19L, 19L, 20L, 
    20L, 21L, 21L, 21L, 22L, 22L, 22L, 3L, 3L, 4L, 4L, 4L, 5L, 
    5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 1L, 
    1L, 11L, 11L, 12L, 12L, 2L, 2L, 13L, 13L, 14L, 14L, 15L, 
    15L, 16L, 17L, 17L, 18L, 18L, 19L, 19L, 20L, 20L, 21L, 21L, 
    21L, 22L, 22L, 22L), levels = c("5", "6", "13", "15", "28", 
    "36", "37", "42", "46", "47", "54", "55", "60", "61", "62", 
    "69", "70", "74", "85", "95", "96", "97"), class = "factor")), row.names = c(NA, 
-244L), class = c("tbl_df", "tbl", "data.frame"))

Now we fit a general model:

Model <- glmer(richness ~ aspect + elevation +
  initial_habitat +
  I(abs(year - 1)) +
  I((year - 1)^2) +
  slope +
  treatment:initial_habitat +
  year:initial_habitat +
  year:treatment +
  year:treatment:initial_habitat +
  (1 | block_no), family = poisson, data = Data, control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)))

And we make a model selection (skip this step since it takes a while, the “SelectRichness.rds” file is in this github)

options(na.action = "na.fail")

library(doParallel)
cl <- makeCluster(4)
registerDoParallel(cl)

clusterEvalQ(cl, library(lme4))
#;-) [[1]]
#;-) [1] "lme4"      "Matrix"    "stats"     "graphics"  "grDevices" "utils"    
#;-) [7] "datasets"  "methods"   "base"     
#;-) 
#;-) [[2]]
#;-) [1] "lme4"      "Matrix"    "stats"     "graphics"  "grDevices" "utils"    
#;-) [7] "datasets"  "methods"   "base"     
#;-) 
#;-) [[3]]
#;-) [1] "lme4"      "Matrix"    "stats"     "graphics"  "grDevices" "utils"    
#;-) [7] "datasets"  "methods"   "base"     
#;-) 
#;-) [[4]]
#;-) [1] "lme4"      "Matrix"    "stats"     "graphics"  "grDevices" "utils"    
#;-) [7] "datasets"  "methods"   "base"
clusterExport(cl, "Data")

Select <- MuMIn::pdredge(Model, extra = list(R2m = function(x) r.squaredGLMM(x)[1, 1], R2c = function(x) r.squaredGLMM(x)[1, 2]), fixed = ~ YEAR:Treatment, cluster = cl)

stopCluster(cl)

saveRDS(Select, "SelectRichness.rds")

And now we Select the best models, I will do this twice, since the outcome of the subset function will be used to show how the best model does not have issues and the averaged model from get.models which is the result I need is not working

Select <- readRDS("SelectRichness.rds")
Selected <- subset(Select, delta < 2)
SelectedList <- get.models(Select, delta < 2)

Working with the best model works

As specified above the goal is to find if the treatments do yieald differences by year 4, based on the model. So first we will show this with the best model

BestModel <- get.models(Selected, 1)[[1]]

noise.emm <- emmeans(BestModel, pairwise ~ year + initial_habitat + initial_habitat:year + year:treatment, at = list(year = 4), data = Data)

pairs(noise.emm, simple = "treatment") |>
  as.data.frame() |>
  dplyr::filter(p.value < 0.05) |>
  dplyr::arrange(initial_habitat, estimate) |>
  dplyr::select(-SE, -df, -z.ratio) |>
  knitr::kable()
contrast year initial_habitat estimate p.value
PermanentExclosure - Control 4 Forest -0.2193592 3.06e-05
PermanentExclosure - Control 4 Meadow -0.2193592 3.06e-05
PermanentExclosure - Control 4 Rangeland -0.2193592 3.06e-05

Working with the average model does not works

This does not work

AV <- model.avg(SelectedList, fit = TRUE)

noise.emm_av <- emmeans(AV, pairwise ~ year + initial_habitat + initial_habitat:year + year:treatment, at = list(year = 4), data = Data)
#;-) Error in (mth$objs[[1]])(object, trms, xlev, grid, ...): Unable to match model terms


Standard output and standard error
-- nothing to show --
Session info
sessioninfo::session_info()
#;-) ─ Session info ───────────────────────────────────────────────────────────────
#;-)  setting  value
#;-)  version  R version 4.2.2 Patched (2022-11-10 r83330)
#;-)  os       Ubuntu 20.04.5 LTS
#;-)  system   x86_64, linux-gnu
#;-)  ui       X11
#;-)  language en_US:en
#;-)  collate  en_US.UTF-8
#;-)  ctype    en_US.UTF-8
#;-)  tz       Europe/Copenhagen
#;-)  date     2023-02-21
#;-)  pandoc   2.19.2 @ /usr/lib/rstudio/bin/quarto/bin/tools/ (via rmarkdown)
#;-) 
#;-) ─ Packages ───────────────────────────────────────────────────────────────────
#;-)  package      * version  date (UTC) lib source
#;-)  boot           1.3-28   2021-05-03 [4] CRAN (R 4.0.5)
#;-)  cli            3.6.0    2023-01-09 [1] CRAN (R 4.2.2)
#;-)  coda           0.19-4   2020-09-30 [3] CRAN (R 4.0.2)
#;-)  codetools      0.2-19   2023-02-01 [4] CRAN (R 4.2.2)
#;-)  digest         0.6.31   2022-12-11 [1] CRAN (R 4.2.2)
#;-)  doParallel   * 1.0.17   2022-02-07 [1] CRAN (R 4.2.1)
#;-)  dplyr          1.1.0    2023-01-29 [1] CRAN (R 4.2.2)
#;-)  emmeans      * 1.8.4-1  2023-01-17 [1] CRAN (R 4.2.2)
#;-)  estimability   1.4.1    2022-08-05 [1] CRAN (R 4.2.1)
#;-)  evaluate       0.20     2023-01-17 [1] CRAN (R 4.2.2)
#;-)  fansi          1.0.4    2023-01-22 [3] CRAN (R 4.2.2)
#;-)  fastmap        1.1.0    2021-01-25 [3] CRAN (R 4.0.3)
#;-)  foreach      * 1.5.2    2022-02-02 [1] CRAN (R 4.2.1)
#;-)  fs             1.6.1    2023-02-06 [3] CRAN (R 4.2.2)
#;-)  generics       0.1.3    2022-07-05 [1] CRAN (R 4.2.1)
#;-)  glue           1.6.2    2022-02-24 [3] CRAN (R 4.1.2)
#;-)  htmltools      0.5.4    2022-12-07 [1] CRAN (R 4.2.2)
#;-)  iterators    * 1.0.14   2022-02-05 [1] CRAN (R 4.2.1)
#;-)  knitr          1.42     2023-01-25 [1] CRAN (R 4.2.2)
#;-)  lattice        0.20-45  2021-09-22 [4] CRAN (R 4.2.0)
#;-)  lifecycle      1.0.3    2022-10-07 [3] CRAN (R 4.2.1)
#;-)  lme4         * 1.1-31   2022-11-01 [1] CRAN (R 4.2.2)
#;-)  magrittr       2.0.3    2022-03-30 [3] CRAN (R 4.1.3)
#;-)  MASS           7.3-58.2 2023-01-23 [4] CRAN (R 4.2.2)
#;-)  Matrix       * 1.5-3    2022-11-11 [4] CRAN (R 4.2.2)
#;-)  minqa          1.2.5    2022-10-19 [3] CRAN (R 4.2.1)
#;-)  multcomp       1.4-20   2022-08-07 [1] CRAN (R 4.2.1)
#;-)  MuMIn        * 1.47.1   2022-09-01 [1] CRAN (R 4.2.2)
#;-)  mvtnorm        1.1-3    2021-10-08 [1] CRAN (R 4.2.1)
#;-)  nlme           3.1-162  2023-01-31 [4] CRAN (R 4.2.2)
#;-)  nloptr         2.0.3    2022-05-26 [3] CRAN (R 4.2.0)
#;-)  pillar         1.8.1    2022-08-19 [1] CRAN (R 4.2.1)
#;-)  pkgconfig      2.0.3    2019-09-22 [3] CRAN (R 4.0.0)
#;-)  purrr          1.0.1    2023-01-10 [1] CRAN (R 4.2.2)
#;-)  R.cache        0.16.0   2022-07-21 [1] CRAN (R 4.2.1)
#;-)  R.methodsS3    1.8.2    2022-06-13 [1] CRAN (R 4.2.1)
#;-)  R.oo           1.25.0   2022-06-12 [1] CRAN (R 4.2.1)
#;-)  R.utils        2.12.2   2022-11-11 [1] CRAN (R 4.2.2)
#;-)  R6             2.5.1    2021-08-19 [3] CRAN (R 4.1.1)
#;-)  Rcpp           1.0.10   2023-01-22 [3] CRAN (R 4.2.2)
#;-)  reprex         2.0.2    2022-08-17 [1] CRAN (R 4.2.2)
#;-)  rlang          1.0.6    2022-09-24 [1] CRAN (R 4.2.1)
#;-)  rmarkdown      2.20     2023-01-19 [1] CRAN (R 4.2.2)
#;-)  rstudioapi     0.14     2022-08-22 [1] CRAN (R 4.2.1)
#;-)  sandwich       3.0-2    2022-06-15 [1] CRAN (R 4.2.1)
#;-)  sessioninfo    1.2.2    2021-12-06 [3] CRAN (R 4.1.2)
#;-)  styler         1.8.1    2022-11-07 [1] CRAN (R 4.2.2)
#;-)  survival       3.5-3    2023-02-12 [4] CRAN (R 4.2.2)
#;-)  TH.data        1.1-1    2022-04-26 [1] CRAN (R 4.2.1)
#;-)  tibble         3.1.8    2022-07-22 [1] CRAN (R 4.2.1)
#;-)  tidyselect     1.2.0    2022-10-10 [1] CRAN (R 4.2.1)
#;-)  utf8           1.2.3    2023-01-31 [3] CRAN (R 4.2.2)
#;-)  vctrs          0.5.2    2023-01-23 [1] CRAN (R 4.2.2)
#;-)  withr          2.5.0    2022-03-03 [3] CRAN (R 4.1.3)
#;-)  xfun           0.37     2023-01-31 [1] CRAN (R 4.2.2)
#;-)  xtable         1.8-4    2019-04-21 [1] CRAN (R 4.2.0)
#;-)  yaml           2.3.7    2023-01-23 [3] CRAN (R 4.2.2)
#;-)  zoo            1.8-11   2022-09-17 [1] CRAN (R 4.2.1)
#;-) 
#;-)  [1] /home/au687614/R/x86_64-pc-linux-gnu-library/4.2
#;-)  [2] /usr/local/lib/R/site-library
#;-)  [3] /usr/lib/R/site-library
#;-)  [4] /usr/lib/R/library
#;-) 
#;-) ──────────────────────────────────────────────────────────────────────────────

Upvotes: 0

Views: 124

Answers (0)

Related Questions