Reputation: 2370
I'm simply trying to load a document (CSV) but I would like to use a custom llm and not the openAI one.
from langchain.indexes import VectorstoreIndexCreator
from langchain.document_loaders import DataFrameLoader
loader = DataFrameLoader(dataframe, page_content_column="TRANSLATED_COMMENT")
index = VectorstoreIndexCreator().from_loaders([loader])
How can I create a VectorstoreIndexCreator() that uses, for example:
llm = HuggingFaceHub(repo_id='decapoda-research/llama-7b-hf', huggingfacehub_api_token='XXXXX')
Upvotes: 1
Views: 912
Reputation: 1204
Yes, it's possible. Here's a code snipped to start from:
from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # Selecting a sentence embedding model
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': False}
hf_embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
index = VectorstoreIndexCreator(embedding=hf_embeddings).from_loaders(loaders)
Upvotes: 1