Reputation: 169
I want solve a non-linear objective function with two non-linear constraints in R. I have succesfully solved the model in GAMS but because of my general data workflow, I would like to use R instead. The idea behind the model is that I would like to calibrate a rational function (four parameters) so that it is consistent with a given dataset (resulting in two constraints), while minimizing the difference between the slope of the function and a target value (objective function). Hence the outcome of the optimization problem are the four parameters that determine the shape of the rational function. I am using the R Optimization Infrastructure (ROI) to solve the model. As I want to solve the model for several different cases, I created a series of functions that accept variables so the objective function and constraints can easily be updated.
My model:
library(ROI)
# I installed several non-linear solvers that were suggested after running ROI_applicable_solvers() on the model
#install.packages("ROI.plugin.alabama")
#install.packages("ROI.plugin.nlminb")
#install.packages("ROI.plugin.nloptr")
# Empirical data for the example
elas_sl_t <- -0.006648
elas_by_t <- 0.2831
gdp_cap_rel_t <- 51.69
cal_cap_t <- 27.75
# Rational function for which parameters x[] need to be solved
elas_f <- function(x, gdp_cap) {
(x[1]*gdp_cap + x[2])/((gdp_cap+x[3])*(gdp_cap+x[4]))
}
# Integral of elas_f
int_elas_f <- function(x, gdp_cap) {
-(x[1] * x[4] - x[2]) * log(gdp_cap + x[4])/(x[4]^2 - x[3] * x[4]) -
(x[2] - x[1] * x[3]) * log(gdp_cap + x[3])/(x[3] * x[4] - x[3]^2) + x[2] * log(gdp_cap)/(x[3] * x[4])
}
# Derivative of elas_f
der_elas_f <- function(x, gdp_cap){
- (x[1] * gdp_cap + x[2]) / ((gdp_cap + x[3])^2 * (gdp_cap + x[4])) -
(x[1] * gdp_cap + x[2]) / ((gdp_cap + x[3]) * (gdp_cap + x[4])^2) + x[1] / ((gdp_cap + x[3]) * (gdp_cap + x[4]))
}
# Objective function (should be minimized)
obj_f <- function(x, gdp_cap = 1, elas_sl_by = elas_sl_t){
(der_elas_f(x, gdp_cap) - elas_sl_by)^2
}
# 1st constraint (should be equal to zero)
con1_f <- function(x, gdp_cap = 1, elas_by = elas_by_t){
elas_f(x, gdp_cap) - elas_by
}
# 2nd constraint (should be equal to zero)
con2_f <- function(x, gdp_cap_ty = gdp_cap_rel_t, gdp_cap_by = 1, cal_ty = cal_cap_t) {
int_elas_f(x, gdp_cap = gdp_cap_ty) - int_elas_f(x, gdp_cap = gdp_cap_by) - log(cal_ty)
}
# The solution of the model is
param_t <- c(1245.685, 30.987, 883.645, 4.097)
# check the solution
con1_f(param_t) # close to zero, ok
con2_f(param_t) # close to zero, ok
obj_f(param_t) # 0.05155
# Solving the model with ROI, using the actual solution as starting values does not work.
nlp <- OP(F_objective(F = obj_f, n = 4),
F_constraint(F = list(con1_f, con2_f), dir = rep("==", 2), rhs = c(0,0)),
maximum = FALSE)
nlp
sol <- ROI_solve(nlp, start = param_t, solver = "auto")
sol
solution(sol)
It seems that the model cannot be solved or perhaps I am doing something wrong. Is it possible to solve the above problem using R (with ROI or perhaps an other package)? Perhaps the available solvers are not good enough? I used the GAMS CONOPT solver to solve my problem, which is not available for ROI/R. I also managed the solve the problems with the GAMS IPOPT solver, which is available for R (https://github.com/coin-or/Ipopt) but unfortunately not as a plugin for ROI (only IPOP, which is a quadratic solver). I also tried the NEOS solver in ROI but this results in an error message as the server cannot be contacted. Any help is much appreciated.
Upvotes: 1
Views: 438
Reputation: 17011
I'm not sure about the "solution" you got from GAMS. Also, what is considered "close to zero"?
# Modified Integral of elas_f
int_elas_f <- function(x, gdp_cap) {
if (any(gdp_cap + c(0, x[3:4]) < 0)) return(NA_real_)
-(x[1] * x[4] - x[2]) * log(gdp_cap + x[4])/(x[4]^2 - x[3] * x[4]) -
(x[2] - x[1] * x[3]) * log(gdp_cap + x[3])/(x[3] * x[4] - x[3]^2) + x[2] * log(gdp_cap)/(x[3] * x[4])
}
with(
optim(
c(1e3, 100, 1e3, 10),
function(x) {
y <- obj_f(x)
y + 1e3*(abs(y) + 1)*(abs(con1_f(x)) + abs(con2_f(x)))
}
), list(par = par, constraints = c(con1_f(par), con2_f(par)), obj = obj_f(par), value = value)
)
#> $par
#> [1] 1361.293833 400.099856 880.053420 6.061782
#>
#> $constraints
#> [1] 1.676616e-08 -2.059692e-08
#>
#> $obj
#> [1] 0.0342367
#>
#> $value
#> [1] 0.03427534
The results are quite sensitive to the initial guess. A more comprehensive exploration indicates the solution may be divergent:
library(data.table)
f <- function(x) {
with(
optim(
x,
function(x) {
y <- obj_f(x)
y + 1e3*(abs(y) + 1)*(abs(con1_f(x)) + abs(con2_f(x)))
}, method = "Nelder-Mead"
),
c(con1_f(par), con2_f(par), obj_f(par))
)
}
m <- RcppAlgos::permuteGeneral(2^(8:20), 4)
n <- nrow(m)
df <- data.frame(con1 = numeric(n), con2 = numeric(n), obj = numeric(n))
for (i in 1:n) df[i,] <- f(m[i,])
dt <- setorder(setDT(df)[,r := .I][abs(con1) < 1e-6 & abs(con2) < 1e-6], obj)
m[dt$r[1],]
#> [1] 1048576 8192 131072 1024
sol <- with(
optim(
m[dt$r[1],],
function(x) {
y <- obj_f(x)
y + 1e3*(abs(y) + 1)*(abs(con1_f(x)) + abs(con2_f(x)))
}
),
list(
par = par,
constraints = c(con1_f(par), con2_f(par)),
obj = obj_f(par),
value = value
)
)
with(
optim(
sol$par,
function(x) {
y <- obj_f(x)
y + 1e5*(abs(y) + 1)*(abs(con1_f(x)) + abs(con2_f(x)))
}
),
list(
par = par,
constraints = c(con1_f(par), con2_f(par)),
obj = obj_f(par),
value = value
)
)
#> $par
#> [1] 4868827.420 24021111.619 30753.161 3317.202
#>
#> $constraints
#> [1] -3.325118e-14 2.353673e-14
#>
#> $obj
#> [1] 0.002944623
#>
#> $value
#> [1] 0.002944629
As I continue to increase the initial values in the search space (e.g., m <- RcppAlgos::permuteGeneral(2^(12:24), 4)
), the parameter values get increasingly larger while the value of the objective function continues to shrink.
The suspicion of non-convergence is supported by ROI
, which has the sense to stop by the time it gets to 3.795066e-03
:
library(ROI)
param_t <- c(1245.685, 30.987, 883.645, 4.097)
nlp <- OP(F_objective(F = obj_f, n = 4),
F_constraint(F = list(con1_f, con2_f), dir = rep("==", 2), rhs = c(0,0)),
maximum = FALSE)
sol <- ROI_solve(nlp, start = param_t, solver = "auto")
#> Warning in nlminb2(start = start, objective = objective(x), eqFun = eqfun, :
#> gradient not applicable for *constrained* NLPs for solver 'nlminb'.
sol
#> No optimal solution found.
#> The solver message was: No solution.
#> The objective value is: 3.795066e-03
sol$solution
#> [1] 3.262698e+06 1.350195e+07 1.333212e+02 4.250796e+05
sol$status$msg$symbol
#> [1] "NON_CONVERGENCE"
sol$message$message
#> [1] "false convergence (8)"
Upvotes: 2