Reputation: 77
I am trying to understand to carryout a Bivariate Probit Model to measure differential levels of of individual victimisation. As such, I am trying to model the outcomes of whether an individual is exposed to crime or not and if this has an effect on an individual being a one off or repeat victim. Following on the approach from "Osborn, D.R., Ellingworth, D., Hope, T. and Trickett, A., 1996. Are repeatedly victimized households different?. Journal of Quantitative Criminology, 12, pp.223-245". See page 233. Here is the data
pdu <- structure(list(polyvictimization9 = c(0L, 1L, 1L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L,
0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L,
0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L),
yrsaddr_1 = c(1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), yrsaddr_2 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L,
1L), cartot_1 = c(1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L), polyvictimization10 = c(NA, 0L, 1L, NA, NA, NA, NA,
0L, 0L, NA, NA, NA, NA, NA, 0L, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, 0L, NA, NA, NA, 0L, NA, NA, NA, NA, 0L, 0L,
NA, NA, NA, NA, NA, 0L, 0L, 0L, NA, NA, NA, NA, 0L, NA, 0L,
NA, NA, NA, NA, NA, 0L, 0L, 0L, NA, NA, NA, NA, NA, NA, NA,
NA, 0L, 1L, NA, 0L, 0L, NA, NA, 1L, 0L, NA, 0L, NA, NA, 0L,
NA, 1L, NA, 0L, NA, NA, 0L, NA, 1L, 0L, 1L, NA, NA, NA, NA,
NA, NA, NA, NA), cartot_2 = c(0L, 1L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L,
0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L,
1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L,
1L, 1L, 0L, 0L)), class = "data.frame", row.names = c(NA,
-101L))
From the data, the 2 binary dependent variables are polyvictimization9
and polyvictimization10
. polyvictimization9
(n = 101) is categorised as 0 = Non victim and 1 = victims (single victim and repeat victims). polyvictimization10
(n = 31) is obtain by recoding polyvictimization9 into 0 = single victim 1 = repeat victim and NA represents non victims).
To execute the bivariate probit model, I used the library(GJRM)
. The first model is
The second model is
The two models have some similar IVs and distinct IVs as well.
Here is the code
bl_pdu <- gjrm(list(polyvictimization9 ~ yrsaddr_1 + yrsaddr_2 + cartot_1,
polyvictimization10 ~ cartot_1 + cartot_2),
data = pdu,
margins = c("probit", "probit"),
model = "B")
This code throws up the error below
Error in if (check.taus && any(abs(tau) > 0.99999)) stop("some tau is too close to -1 or 1") :
missing value where TRUE/FALSE needed
In addition: Warning message:
In cor(res1, res2, method = "kendall") : the standard deviation is zero
Please, I would appreciate any help.
Upvotes: 1
Views: 92