James White
James White

Reputation: 815

Filter out values within certain time differences within inconsistent time series dataset

I have time series dataset with values measured at various frequencies at different sampling locations ('site_no'). I would like to filter down this dataset to remove lots of samples taken in quick succession - within 15-minutes in my case. Here is a simplified example:

library(lubridate)
set.seed(42)
n_sites <- 5
n_rows <- 100
df <- data.frame(
 Date_time = ymd_hms("2013-01-01 10:17:00", tz = "GMT") + minutes(0:(n_sites * n_rows - 1) * 2),
site_no = as.character(rep(1:n_sites, each = n_rows)),
 Value = rnorm(n_sites * n_rows))
df2 <- data.frame(Date_time = rep(ymd_hms("2013-01-02 05:00:00", tz = "GMT"),times=5),
              site_no = as.character(c(1:5)),
              Value = c(10,10,10,10,10))
df <- rbind(df,df2)
df <- df[order(df$site_no,df$Date_time),]

What I would like to do, for each site number ('site_no'), is to output a new data frame based on:

So for example, for site_no '1', the first time step is at 10:17am. I would then like to remove the time values between 10:19-10:29am (rows 2-7) and keep row 8 which has a 'date_time' time stamp of 10:31am. This is because this value is the maximum time difference from 10:17am within a 15-minute window. From 10:31am (row 8), I would then like to remove rows 9-14 (10:33-10:43am) and select row 15 that has a timestamp of 10:45am - 14-minutes after 10:31am (the max time differences within a 15-min window).

Lastly, if the time difference between the row versus the preceding row is >15-minutes, I would like to keep both of these. So in the example, I would like to keep the last row per site_no at 5:00am.

If its possible to achieve this in a way that reduces data processing power (i.e., vectorized approaches rather than explicit loops) that would be great as I have a very large dataset.

Many thanks in advance.

Upvotes: 3

Views: 128

Answers (2)

mapardo
mapardo

Reputation: 84

An alternative function to run with nest/purrr:

filterDate <- function(df) {
  t <- df %>% pull(Date_time)
  i <- 1
  p <- c(i)
  m <- length(t)
  while(i < m) {
    j <- 0
    d <- as.numeric(t[seq(i+1,length(t))] - t[i], units = "mins")
    if (any(d <= 15 & d > 0)) {
      i <- max(which(d <= 15 & d > 0)) + i
    } else {
      i <- min(which(d > 0)) + i
    }
    p <- c(p,i)
  }
  df.filter <- df[p,]
  return(df.filter)
}

nest/purrr run:

df %>% nest(d=-c(site_no)) %>% mutate(o=purrr::map(d,filterDate)) %>% unnest(o) %>% 
  transmute(Date_time,site_no,Value) %>% as.data.frame()

Benchmark result similar to dplyr algorithm:

# A tibble: 4 × 13
  expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result        memory                 time            gc               
  <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list>        <list>                 <list>          <list>           
1 dplyr        22.8ms   25.9ms      39.9  586.96KB     4.70    17     2      426ms <df [85 × 3]> <Rprofmem [1,139 × 3]> <bench_tm [19]> <tibble [19 × 3]>
2 data.table   19.4ms   19.8ms      50.3    2.06MB     7.54    20     3      398ms <df [85 × 3]> <Rprofmem [1,361 × 3]> <bench_tm [23]> <tibble [23 × 3]>
3 baseR        13.4ms   13.8ms      70.0   789.2KB    10.0     28     4      400ms <df [85 × 3]> <Rprofmem [1,578 × 3]> <bench_tm [32]> <tibble [32 × 3]>
4 new          26.1ms   26.4ms      37.8   482.6KB     4.73    16     2      423ms <df [85 × 3]> <Rprofmem [1,088 × 3]> <bench_tm [18]> <tibble [18 × 3]>
> 

Upvotes: 1

r2evans
r2evans

Reputation: 160407

I don't know that you can do it without a loop. Here's a simple function that loops as efficiently as it can, bounding by dates found. The worst-case is when all diffs are over 15 minutes, in which case this iterates over every value in the vector.

Notes:

  1. Whenever I have a while loop and I'm not always 100% it has a clear exit strategy, I put in an iteration limit to prevent an infinite loop. I did it here using maxiters=length(tm), which means it will never loop more times than there are values in the input vector. It is likely not strictly necessary, but I have bitten myself too many times with "clearly it won't go infinite" (and a subsequent "oops") to not do it here, at least in dev.

  2. The data must be pre-sorted by date within each site_no group.

  3. The site_no grouping must be handled externally to the function.

The function:


fun <- function(tm, mins = 15, maxiters = length(tm), debug = TRUE) {
  out <- replace(tm, -1, tm[1][NA])
  lastused <- which.max(!is.na(out))
  iter <- 0
  while (iter < maxiters) {
    if (lastused >= length(tm)) break
    iter <- iter + 1
    diffs <- as.numeric(tm[-(1:lastused)] - tm[lastused], units = "mins")
    if (any(found <- (diffs <= mins)) ) {
      nextused <- sum(found)
      out[(lastused+1):(lastused+nextused-1)] <- tm[lastused]
      out[lastused + nextused] <- tm[lastused + nextused]
      lastused <- lastused + nextused
    } else {
      out[lastused + 1] <- tm[lastused + 1]
      lastused <- lastused + 1
    }
  }
  if (debug) message("# took ", iter, " iterations")
  out
}

dplyr

library(dplyr)
df %>%
  mutate(prevtime = fun(Date_time), .by = site_no) %>%
  slice_head(n = 1, by = c("site_no", "prevtime"))
# # took 16 iterations
# # took 16 iterations
# # took 16 iterations
# # took 16 iterations
# # took 16 iterations
#              Date_time site_no        Value            prevtime
# 1  2013-01-01 10:17:00       1  1.370958447 2013-01-01 10:17:00
# 2  2013-01-01 10:31:00       1 -0.094659038 2013-01-01 10:31:00
# 3  2013-01-01 10:45:00       1 -0.133321336 2013-01-01 10:45:00
# 4  2013-01-01 10:59:00       1 -1.781308434 2013-01-01 10:59:00
# 5  2013-01-01 11:13:00       1  0.460097355 2013-01-01 11:13:00
# 6  2013-01-01 11:27:00       1 -1.717008679 2013-01-01 11:27:00
# 7  2013-01-01 11:41:00       1  0.758163236 2013-01-01 11:41:00
# 8  2013-01-01 11:55:00       1  0.655647883 2013-01-01 11:55:00
# 9  2013-01-01 12:09:00       1  0.679288816 2013-01-01 12:09:00
# 10 2013-01-01 12:23:00       1  1.399736827 2013-01-01 12:23:00
# 11 2013-01-01 12:37:00       1 -1.043118939 2013-01-01 12:37:00
# 12 2013-01-01 12:51:00       1  0.463767589 2013-01-01 12:51:00
# 13 2013-01-01 13:05:00       1 -1.194328895 2013-01-01 13:05:00
# 14 2013-01-01 13:19:00       1 -0.476173923 2013-01-01 13:19:00
# 15 2013-01-01 13:33:00       1  0.079982553 2013-01-01 13:33:00
# 16 2013-01-01 13:35:00       1  0.653204340 2013-01-01 13:35:00
# 17 2013-01-02 05:00:00       1 10.000000000 2013-01-02 05:00:00
# 18 2013-01-01 13:37:00       2  1.200965376 2013-01-01 13:37:00
# 19 2013-01-01 13:51:00       2 -0.122350172 2013-01-01 13:51:00
# 20 2013-01-01 14:05:00       2 -1.661099080 2013-01-01 14:05:00
# 21 2013-01-01 14:19:00       2 -1.470435741 2013-01-01 14:19:00
# 22 2013-01-01 14:33:00       2 -1.224747950 2013-01-01 14:33:00
# 23 2013-01-01 14:47:00       2 -1.097113768 2013-01-01 14:47:00
# 24 2013-01-01 15:01:00       2 -0.444684005 2013-01-01 15:01:00
# 25 2013-01-01 15:15:00       2 -1.056368413 2013-01-01 15:15:00
# 26 2013-01-01 15:29:00       2 -0.007762034 2013-01-01 15:29:00
# 27 2013-01-01 15:43:00       2 -0.362738416 2013-01-01 15:43:00
# 28 2013-01-01 15:57:00       2 -0.229778139 2013-01-01 15:57:00
# 29 2013-01-01 16:11:00       2  0.643008700 2013-01-01 16:11:00
# 30 2013-01-01 16:25:00       2 -0.279259373 2013-01-01 16:25:00
# 31 2013-01-01 16:39:00       2 -0.345087978 2013-01-01 16:39:00
# 32 2013-01-01 16:53:00       2  1.815228446 2013-01-01 16:53:00
# 33 2013-01-01 16:55:00       2  0.128821429 2013-01-01 16:55:00
# 34 2013-01-02 05:00:00       2 10.000000000 2013-01-02 05:00:00
# 35 2013-01-01 16:57:00       3 -2.000929238 2013-01-01 16:57:00
# 36 2013-01-01 17:11:00       3 -1.054055782 2013-01-01 17:11:00
# 37 2013-01-01 17:25:00       3  0.495619642 2013-01-01 17:25:00
# 38 2013-01-01 17:39:00       3 -0.351512874 2013-01-01 17:39:00
# 39 2013-01-01 17:53:00       3 -0.658503426 2013-01-01 17:53:00
# 40 2013-01-01 18:07:00       3 -0.390965408 2013-01-01 18:07:00
# 41 2013-01-01 18:21:00       3  1.258481665 2013-01-01 18:21:00
# 42 2013-01-01 18:35:00       3 -0.971385229 2013-01-01 18:35:00
# 43 2013-01-01 18:49:00       3 -0.738440754 2013-01-01 18:49:00
# 44 2013-01-01 19:03:00       3 -1.851555663 2013-01-01 19:03:00
# 45 2013-01-01 19:17:00       3  0.573751697 2013-01-01 19:17:00
# 46 2013-01-01 19:31:00       3 -1.242670271 2013-01-01 19:31:00
# 47 2013-01-01 19:45:00       3  0.043722008 2013-01-01 19:45:00
# 48 2013-01-01 19:59:00       3  0.446041053 2013-01-01 19:59:00
# 49 2013-01-01 20:13:00       3  0.097340485 2013-01-01 20:13:00
# 50 2013-01-01 20:15:00       3 -1.625616739 2013-01-01 20:15:00
# 51 2013-01-02 05:00:00       3 10.000000000 2013-01-02 05:00:00
# 52 2013-01-01 20:17:00       4 -0.004620768 2013-01-01 20:17:00
# 53 2013-01-01 20:31:00       4  0.992943637 2013-01-01 20:31:00
# 54 2013-01-01 20:45:00       4  0.586807720 2013-01-01 20:45:00
# 55 2013-01-01 20:59:00       4  0.189128812 2013-01-01 20:59:00
# 56 2013-01-01 21:13:00       4 -0.835205805 2013-01-01 21:13:00
# 57 2013-01-01 21:27:00       4 -0.073458335 2013-01-01 21:27:00
# 58 2013-01-01 21:41:00       4 -0.434617039 2013-01-01 21:41:00
# 59 2013-01-01 21:55:00       4  1.353361894 2013-01-01 21:55:00
# 60 2013-01-01 22:09:00       4 -0.290145312 2013-01-01 22:09:00
# 61 2013-01-01 22:23:00       4 -0.336311209 2013-01-01 22:23:00
# 62 2013-01-01 22:37:00       4  1.628442266 2013-01-01 22:37:00
# 63 2013-01-01 22:51:00       4 -1.109418760 2013-01-01 22:51:00
# 64 2013-01-01 23:05:00       4 -0.195656817 2013-01-01 23:05:00
# 65 2013-01-01 23:19:00       4 -0.301869926 2013-01-01 23:19:00
# 66 2013-01-01 23:33:00       4 -0.255607655 2013-01-01 23:33:00
# 67 2013-01-01 23:35:00       4  0.931032901 2013-01-01 23:35:00
# 68 2013-01-02 05:00:00       4 10.000000000 2013-01-02 05:00:00
# 69 2013-01-01 23:37:00       5  1.334912585 2013-01-01 23:37:00
# 70 2013-01-01 23:51:00       5  0.655511883 2013-01-01 23:51:00
# 71 2013-01-02 00:05:00       5 -0.777351759 2013-01-02 00:05:00
# 72 2013-01-02 00:19:00       5 -1.453529565 2013-01-02 00:19:00
# 73 2013-01-02 00:33:00       5  0.152608159 2013-01-02 00:33:00
# 74 2013-01-02 00:47:00       5  0.890356305 2013-01-02 00:47:00
# 75 2013-01-02 01:01:00       5  1.429338080 2013-01-02 01:01:00
# 76 2013-01-02 01:15:00       5  0.546115158 2013-01-02 01:15:00
# 77 2013-01-02 01:29:00       5  1.618343936 2013-01-02 01:29:00
# 78 2013-01-02 01:43:00       5 -1.083075142 2013-01-02 01:43:00
# 79 2013-01-02 01:57:00       5 -0.009056475 2013-01-02 01:57:00
# 80 2013-01-02 02:11:00       5 -0.283647452 2013-01-02 02:11:00
# 81 2013-01-02 02:25:00       5  0.761863447 2013-01-02 02:25:00
# 82 2013-01-02 02:39:00       5 -0.115135986 2013-01-02 02:39:00
# 83 2013-01-02 02:53:00       5  0.121258850 2013-01-02 02:53:00
# 84 2013-01-02 02:55:00       5 -0.011221686 2013-01-02 02:55:00
# 85 2013-01-02 05:00:00       5 10.000000000 2013-01-02 05:00:00

data.table

library(data.table)
as.data.table(df)[, prevtime := fun(Date_time), by = .(site_no)
                  ][, .SD[1,], by = .(site_no, prevtime)
                    ][, prevtime := NULL]

(The columns are in a different order, otherwise identical to the dplyr method above.)

base R

A bit more work, but it produces the same results as dplyr and data.table above.

split(df, df$site_no) |>
  lapply(function(site) {
    transform(site, prevtime = fun(Date_time, debug=F)) |>
      transform(grp = cumsum(c(TRUE, prevtime[-1] != prevtime[-length(prevtime)]))) |>
      subset(ave(grp, grp, FUN = seq_along) == 1)
  }) |>
  do.call(rbind.data.frame, args = _) |>
  subset(select = -c(prevtime, grp))

Benchmark/Comparison

All three produce the same output, albeit with minor caveats: the data.table method reorders columns and a different class object, and the base-R solution preserves the original row names. Both of those are cosmetic, but for the sake of benchmarking I'll fix those changes so that bench::mark(.) will confirm that all outputs are the same.

bench::mark(
  dplyr = {
    df %>%
      mutate(prevtime = fun(Date_time, debug=F), .by = site_no) %>%
      slice_head(n = 1, by = c("site_no", "prevtime")) %>%
      select(-prevtime)
  },
  data.table = {
    as.data.table(df)[, prevtime := fun(Date_time, debug=F), by = .(site_no)
                      ][, .SD[1,], by = .(site_no, prevtime)
                        ][, prevtime := NULL] |>
      # data.table is reordering columns above, aesthetic fix only for bench::mark
      setcolorder(names(df)) |>
      as.data.frame()
  },
  baseR = {
    split(df, df$site_no) |>
      lapply(function(site) {
        transform(site, prevtime = fun(Date_time, debug=F)) |>
          transform(grp = cumsum(c(TRUE, prevtime[-1] != prevtime[-length(prevtime)]))) |>
          subset(ave(grp, grp, FUN = seq_along) == 1)
      }) |>
      do.call(rbind.data.frame, args = _) |>
      subset(select = -c(prevtime, grp)) |>
      # the original row names are preserved, aesthetic fix only for bench::mark
      `rownames<-`(NULL)
  }
)

# # A tibble: 3 × 13
#   expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result        memory time            gc               
#   <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list>        <list> <list>          <list>           
# 1 dplyr          11ms  11.32ms      85.0        NA     6.07    28     2      329ms <df [85 × 3]> <NULL> <bench_tm [30]> <tibble [30 × 3]>
# 2 data.table  10.65ms  11.13ms      81.9        NA     2.56    32     1      391ms <df [85 × 3]> <NULL> <bench_tm [33]> <tibble [33 × 3]>
# 3 baseR        6.98ms   7.45ms     130.         NA     2.66    49     1      376ms <df [85 × 3]> <NULL> <bench_tm [50]> <tibble [50 × 3]>

I admit I'm a little surprised that the base-R was fastest (and data.table the slowest!) among the three, but with larger data this may not always be the case.

Upvotes: 2

Related Questions