Reputation: 1743
I am looking at the CartPole
environment over here and I don't see how the step
function (or any other function) takes care to ensure the agent doesn't cross 500 steps -
def step(self, action):
err_msg = f"{action!r} ({type(action)}) invalid"
assert self.action_space.contains(action), err_msg
assert self.state is not None, "Call reset before using step method."
x, x_dot, theta, theta_dot = self.state
force = self.force_mag if action == 1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)
# For the interested reader:
# https://coneural.org/florian/papers/05_cart_pole.pdf
temp = (
force + self.polemass_length * theta_dot**2 * sintheta
) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length * (4.0 / 3.0 - self.masspole * costheta**2 / self.total_mass)
)
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
if self.kinematics_integrator == "euler":
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
self.state = (x, x_dot, theta, theta_dot)
terminated = bool(
x < -self.x_threshold
or x > self.x_threshold
or theta < -self.theta_threshold_radians
or theta > self.theta_threshold_radians
)
if not terminated:
reward = 1.0
elif self.steps_beyond_terminated is None:
# Pole just fell!
self.steps_beyond_terminated = 0
reward = 1.0
else:
if self.steps_beyond_terminated == 0:
logger.warn(
"You are calling 'step()' even though this "
"environment has already returned terminated = True. You "
"should always call 'reset()' once you receive 'terminated = "
"True' -- any further steps are undefined behavior."
)
self.steps_beyond_terminated += 1
reward = 0.0
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), reward, terminated, False, {}
That's not the case with Farama Gymnasium though. The step function there has the following code to ensure it -
truncated = self.steps >= self.max_episode_steps
Unfortunately, I am expected to run the gym
environment. I am currently facing the issue where the agent doesn't stop even though it crosses 500 steps.
Upvotes: 0
Views: 200
Reputation: 1743
It seems that for default environments, the TimeLimitWrapper
over here takes care of applying the time limits -
# Add the time limit wrapper
if max_episode_steps is not None:
env = TimeLimit(env, max_episode_steps)
elif spec_.max_episode_steps is not None:
env = TimeLimit(env, spec_.max_episode_steps)
The __init__.py
file contains the max_episode_steps
for CartPole -
register(
id="CartPole-v0",
entry_point="gym.envs.classic_control.cartpole:CartPoleEnv",
max_episode_steps=200,
reward_threshold=195.0,
)
Upvotes: 0