Lăng Khoa
Lăng Khoa

Reputation: 23

Reading multiple videos in parallel with PySpark

I need to write a PySpark script in order to read in multiple video from mp4 files parallelly and then process it in PySpark. (These 4 video stream represent multiple RTSP video stream which I will capture in the future).

My first approach was to use the multiprocessing library to read 4 video files in parallel. But this approach of mine generated many errors related to Spark such as "Only one SparkContext should be running in this JVM", "Java Heap Space (not enough memory)", etc.

So, my question is that are there any other approach to read multiple mp4 video files in parallel without using the multiprocessing library? I did a search on Google Bard lately and it said that I can parallelly read video stream directly into SparkContext RDD like this:

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

def video_receiver(iterator):
    from cv2 import VideoCapture

    while True:
        video_path = iterator.next()
        cap = VideoCapture(video_path)
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            yield frame

sc = SparkContext()
ssc = StreamingContext(sc, batchDuration=batch_interval)

video_paths = ['video1.mp4', 'video2.mp4', 'video3.mp4', 'video4.mp4']
video_rdd = sc.parallelize(video_paths)
video_stream = video_rdd.mapPartitions(video_receiver)

I didn't run the script at the time of writing this question but I doubt this will work. If anyone has encountered the same issues or have any kind of solution, please help me on this.

Upvotes: 1

Views: 569

Answers (1)

user238607
user238607

Reputation: 2468

I have adapted the following jupyter notebook to show how spark can do video processing at scale.

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/1969271421694072/3760413548916830/5612335034456173/latest.html

You need to install python libraries in your conda environment. Also make sure you have ffmpeg library installed natively:

pip install ffmpeg-python

pip install face-recognition

conda install -c conda-forge opencv

Download a .mp4 video with face in it to perform face detection according to the following code.

https://www.videezy.com/free-video/face?format-mp4=true

Following the pyspark code :

from pyspark import SQLContext, SparkConf, SparkContext
from pyspark.sql import SparkSession
import pyspark.sql.functions as F


conf = SparkConf().setAppName("myApp").setMaster("local[40]")
spark = SparkSession.builder.master("local[40]").config("spark.driver.memory", "30g").getOrCreate()

sc = spark.sparkContext
sqlContext = SQLContext(sc)

import cv2
import os
import uuid
import ffmpeg
import subprocess
import numpy as np

from scipy.optimize import linear_sum_assignment
import pyspark.sql.functions as F
from pyspark.sql import Row
from pyspark.sql.types import (StructType, StructField,
                               IntegerType, FloatType,
                               ArrayType, BinaryType,
                               MapType, DoubleType, StringType)

from pyspark.sql.window import Window
from pyspark.ml.feature import StringIndexer
from pyspark.sql import Row, DataFrame, SparkSession

import pathlib

videos = []

input_dir = "../data/video_files/faces/"

pathlist = list(pathlib.Path(input_dir).glob('*.mp4'))

pathlist = [Row(str(ele)) for ele in pathlist]
print(pathlist)

column_name = ["video_uri"]

df = sqlContext.createDataFrame(data=pathlist, schema=column_name)

print("Initial dataframe")
df.show(10, truncate=False)

video_metadata = StructType([
    StructField("width", IntegerType(), False),
    StructField("height", IntegerType(), False),
    StructField("num_frames", IntegerType(), False),
    StructField("duration", FloatType(), False)
])

shots_schema = ArrayType(
    StructType([
        StructField("start", FloatType(), False),
        StructField("end", FloatType(), False)
    ]))


@F.udf(returnType=video_metadata)
def video_probe(uri):
    probe = ffmpeg.probe(uri, threads=1)
    video_stream = next(
        (
            stream
            for stream in probe["streams"]
            if stream["codec_type"] == "video"
        ),
        None,
    )
    width = int(video_stream["width"])
    height = int(video_stream["height"])
    num_frames = int(video_stream["nb_frames"])
    duration = float(video_stream["duration"])
    return (width, height, num_frames, duration)


@F.udf(returnType=ArrayType(BinaryType()))
def video2images(uri, width, height,
                 sample_rate: int = 5,
                 start: float = 0.0,
                 end: float = -1.0,
                 n_channels: int = 3):
    """
    Uses FFmpeg filters to extract image byte arrays
    and sampled & localized to a segment of video in time.
    """
    video_data, _ = (
        ffmpeg.input(uri, threads=1)
        .output(
            "pipe:",
            format="rawvideo",
            pix_fmt="rgb24",
            ss=start,
            t=end - start,
            r=1 / sample_rate,
        ).run(capture_stdout=True))
    img_size = height * width * n_channels
    return [video_data[idx:idx + img_size] for idx in range(0, len(video_data), img_size)]


df = df.withColumn("metadata", video_probe(F.col("video_uri")))
print("With Metadata")
df.show(10, truncate=False)

df = df.withColumn("frame", F.explode(
    video2images(F.col("video_uri"), F.col("metadata.width"), F.col("metadata.height"), F.lit(1), F.lit(0.0),
                 F.lit(5.0))))

import face_recognition

box_struct = StructType(
    [
        StructField("xmin", IntegerType(), False),
        StructField("ymin", IntegerType(), False),
        StructField("xmax", IntegerType(), False),
        StructField("ymax", IntegerType(), False)
    ]
)


def bbox_helper(bbox):
    top, right, bottom, left = bbox
    bbox = [top, left, bottom, right]

    return list(map(lambda x: max(x, 0), bbox))


@F.udf(returnType=ArrayType(box_struct))
def face_detector(img_data, width=1920, height=1080, n_channels=3):
    img = np.frombuffer(img_data, np.uint8).reshape(height, width, n_channels)
    faces = face_recognition.face_locations(img)
    return [bbox_helper(f) for f in faces]


df = df.withColumn("faces", face_detector(F.col("frame"), F.col("metadata.width"), F.col("metadata.height")))

annot_schema = ArrayType(
    StructType(
        [
            StructField("bbox", box_struct, False),
            StructField("tracker_id", StringType(), False),
        ]
    )
)


def bbox_iou(b1, b2):
    L = list(zip(b1, b2))
    left, top = np.max(L, axis=1)[:2]
    right, bottom = np.min(L, axis=1)[2:]
    if right < left or bottom < top:
        return 0
    b_area = lambda b: (b[2] - b[0]) * (b[3] - b[1])
    inter_area = b_area([left, top, right, bottom])
    b1_area, b2_area = b_area(b1), b_area(b2)
    iou = inter_area / float(b1_area + b2_area - inter_area)
    return iou


@F.udf(returnType=MapType(IntegerType(), IntegerType()))
def tracker_match(trackers, detections, bbox_col="bbox", threshold=0.3):
    """
    Match Bounding Boxes across successive image frames.
    Parameters
        ----------
        trackers : List of Box2dType with str identifier
            A column of tracked objects.
        detections: List of Box2dType without tracker id matching
            The list of unmatched detections.
        bbox_col: str
                A string to name the column of bounding boxes.
        threshold : Float
                IOU of Box2d objects exceeding threshold will be matched.
        Return
        ------
        MapType
            Returns a MapType matching indices of trackers and detections.
    """
    from scipy.optimize import linear_sum_assignment

    similarity = bbox_iou  # lambda a, b: a.iou(b)
    if not trackers or not detections:
        return {}
    if len(trackers) == len(detections) == 1:
        if (
                similarity(trackers[0][bbox_col], detections[0][bbox_col])
                >= threshold
        ):
            return {0: 0}

    sim_mat = np.array(
        [
            [
                similarity(tracked[bbox_col], detection[bbox_col])
                for tracked in trackers
            ]
            for detection in detections
        ],
        dtype=np.float32,
    )

    matched_idx = linear_sum_assignment(-sim_mat)
    matches = []
    for m in matched_idx:
        try:
            if sim_mat[m[0], m[1]] >= threshold:
                matches.append(m.reshape(1, 2))
        except:
            pass

    if len(matches) == 0:
        return {}
    else:
        matches = np.concatenate(matches, axis=0, dtype=int)

    rows, cols = zip(*np.where(matches))
    idx_map = {cols[idx]: rows[idx] for idx in range(len(rows))}
    return idx_map


@F.udf(returnType=ArrayType(box_struct))
def OFMotionModel(frame, prev_frame, bboxes, height, width):
    if not prev_frame:
        prev_frame = frame
    gray = cv2.cvtColor(np.frombuffer(frame, np.uint8).reshape(height, width, 3), cv2.COLOR_BGR2GRAY)
    prev_gray = cv2.cvtColor(np.frombuffer(prev_frame, np.uint8).reshape(height, width, 3), cv2.COLOR_BGR2GRAY)

    inst = cv2.DISOpticalFlow.create(cv2.DISOPTICAL_FLOW_PRESET_MEDIUM)
    inst.setUseSpatialPropagation(False)

    flow = inst.calc(prev_gray, gray, None)

    h, w = flow.shape[:2]
    shifted_boxes = []
    for box in bboxes:
        xmin, ymin, xmax, ymax = box
        avg_y = np.mean(flow[int(ymin):int(ymax), int(xmin):int(xmax), 0])
        avg_x = np.mean(flow[int(ymin):int(ymax), int(xmin):int(xmax), 1])

        shifted_boxes.append(
            {"xmin": int(max(0, xmin + avg_x)), "ymin": int(max(0, ymin + avg_y)), "xmax": int(min(w, xmax + avg_x)),
             "ymax": int(min(h, ymax + avg_y))})
    return shifted_boxes


def match_annotations(iterator, segment_id="video_uri", id_col="tracker_id"):
    """
    Used by mapPartitions to iterate over the small chunks of our hierarchically-organized data.
    """

    matched_annots = []
    for idx, data in enumerate(iterator):
        data = data[1]
        if not idx:
            old_row = {idx: uuid.uuid4() for idx in range(len(data[1]))}
            old_row[segment_id] = data[0]
            pass
        annots = []
        curr_row = {segment_id: data[0]}
        if old_row[segment_id] != curr_row[segment_id]:
            old_row = {}
        if data[2] is not None:
            for ky, vl in data[2].items():
                detection = data[1][vl].asDict()
                detection[id_col] = old_row.get(ky, uuid.uuid4())
                curr_row[vl] = detection[id_col]
                annots.append(Row(**detection))
        matched_annots.append(annots)
        old_row = curr_row
    return matched_annots


def track_detections(df, segment_id="video_uri", frames="frame", detections="faces", optical_flow=True):
    id_col = "tracker_id"
    frame_window = Window().orderBy(frames)
    value_window = Window().orderBy("value")
    annot_window = Window.partitionBy(segment_id).orderBy(segment_id, frames)
    indexer = StringIndexer(inputCol=segment_id, outputCol="vidIndex")

    # adjust detections w/ optical flow
    if optical_flow:
        df = (
            df.withColumn("prev_frames", F.lag(F.col(frames)).over(annot_window))
            .withColumn(detections, OFMotionModel(F.col(frames), F.col("prev_frames"), F.col(detections), F.col("metadata.height"), F.col("metadata.width")))
        )

    df = (
        df.select(segment_id, frames, detections)
        .withColumn("bbox", F.explode(detections))
        .withColumn(id_col, F.lit(""))
        .withColumn("trackables", F.struct([F.col("bbox"), F.col(id_col)]))
        .groupBy(segment_id, frames, detections)
        .agg(F.collect_list("trackables").alias("trackables"))
        .withColumn(
            "old_trackables", F.lag(F.col("trackables")).over(annot_window)
        )
        .withColumn(
            "matched",
            tracker_match(F.col("trackables"), F.col("old_trackables")),
        )
        .withColumn("frame_index", F.row_number().over(frame_window))
    )

    df = (
        indexer.fit(df)
        .transform(df)
        .withColumn("vidIndex", F.col("vidIndex").cast(StringType()))
    )
    unique_ids = df.select("vidIndex").distinct().count()
    matched = (
        df.select("vidIndex", segment_id, "trackables", "matched")
        .rdd.map(lambda x: (x[0], x[1:]))
        .partitionBy(unique_ids, lambda x: int(x[0]))
        .mapPartitions(match_annotations)
    )
    matched_annotations = sqlContext.createDataFrame(matched, annot_schema).withColumn("value_index",
                                                                                       F.row_number().over(
                                                                                           value_window))

    return (
        df.join(matched_annotations, F.col("value_index") == F.col("frame_index"))
        .withColumnRenamed("value", "trackers_matched")
        .withColumn("tracked", F.explode(F.col("trackers_matched")))
        .select(
            segment_id,
            frames,
            detections,
            F.col("tracked.{}".format("bbox")).alias("bbox"),
            F.col("tracked.{}".format(id_col)).alias(id_col),
        )
        .withColumn(id_col, F.sha2(F.concat(F.col(segment_id), F.col(id_col)), 256))
        .withColumn("tracked_detections", F.struct([F.col("bbox"), F.col(id_col)]))
        .groupBy(segment_id, frames, detections)
        .agg(F.collect_list("tracked_detections").alias("tracked_detections"))
        .orderBy(segment_id, frames, detections)
    )


from pyspark import keyword_only
from pyspark.ml.pipeline import Transformer
from pyspark.ml.param.shared import HasInputCol, HasOutputCol, Param


class DetectionTracker(Transformer, HasInputCol, HasOutputCol):
    """Detect and track."""

    @keyword_only
    def __init__(self, inputCol=None, outputCol=None, framesCol=None, detectionsCol=None, optical_flow=None):
        """Initialize."""
        super(DetectionTracker, self).__init__()
        self.framesCol = Param(self, "framesCol", "Column containing frames.")
        self.detectionsCol = Param(self, "detectionsCol", "Column containing detections.")
        self.optical_flow = Param(self, "optical_flow", "Use optical flow for tracker correction. Default is False")
        self._setDefault(framesCol="frame", detectionsCol="faces", optical_flow=False)
        kwargs = self._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    def setParams(self, inputCol=None, outputCol=None, framesCol=None, detectionsCol=None, optical_flow=None):
        """Get params."""
        kwargs = self._input_kwargs
        return self._set(**kwargs)

    def setFramesCol(self, value):
        """Set framesCol."""
        return self._set(framesCol=value)

    def getFramesCol(self):
        """Get framesCol."""
        return self.getOrDefault(self.framesCol)

    def setDetectionsCol(self, value):
        """Set detectionsCol."""
        return self._set(detectionsCol=value)

    def getDetectionsCol(self):
        """Get detectionsCol."""
        return self.getOrDefault(self.detectionsCol)

    def setOpticalflow(self, value):
        """Set optical_flow."""
        return self._set(optical_flow=value)

    def getOpticalflow(self):
        """Get optical_flow."""
        return self.getOrDefault(self.optical_flow)

    def _transform(self, dataframe):
        """Do transformation."""
        input_col = self.getInputCol()
        output_col = self.getOutputCol()
        frames_col = self.getFramesCol()
        detections_col = self.getDetectionsCol()
        optical_flow = self.getOpticalflow()

        id_col = "tracker_id"
        frame_window = Window().orderBy(frames_col)
        value_window = Window().orderBy("value")
        annot_window = Window.partitionBy(input_col).orderBy(input_col, frames_col)
        indexer = StringIndexer(inputCol=input_col, outputCol="vidIndex")

        # adjust detections w/ optical flow
        if optical_flow:
            dataframe = (
                dataframe.withColumn("prev_frames", F.lag(F.col(frames_col)).over(annot_window))
                .withColumn(detections_col,
                            OFMotionModel(F.col(frames_col), F.col("prev_frames"), F.col(detections_col)))
            )

        dataframe = (
            dataframe.select(input_col, frames_col, detections_col)
            .withColumn("bbox", F.explode(detections_col))
            .withColumn(id_col, F.lit(""))
            .withColumn("trackables", F.struct([F.col("bbox"), F.col(id_col)]))
            .groupBy(input_col, frames_col, detections_col)
            .agg(F.collect_list("trackables").alias("trackables"))
            .withColumn(
                "old_trackables", F.lag(F.col("trackables")).over(annot_window)
            )
            .withColumn(
                "matched",
                tracker_match(F.col("trackables"), F.col("old_trackables")),
            )
            .withColumn("frame_index", F.row_number().over(frame_window))
        )

        dataframe = (
            indexer.fit(dataframe)
            .transform(dataframe)
            .withColumn("vidIndex", F.col("vidIndex").cast(StringType()))
        )

        unique_ids = dataframe.select("vidIndex").distinct().count()
        matched = (
            dataframe.select("vidIndex", input_col, "trackables", "matched")
            .rdd.map(lambda x: (x[0], x[1:]))
            .partitionBy(unique_ids, lambda x: int(x[0]))
            .mapPartitions(match_annotations)
        )

        matched_annotations = sqlContext.createDataFrame(matched, annot_schema).withColumn("value_index",
                                                                                           F.row_number().over(
                                                                                               value_window))

        return (
            dataframe.join(matched_annotations, F.col("value_index") == F.col("frame_index"))
            .withColumnRenamed("value", "trackers_matched")
            .withColumn("tracked", F.explode(F.col("trackers_matched")))
            .select(
                input_col,
                frames_col,
                detections_col,
                F.col("tracked.{}".format("bbox")).alias("bbox"),
                F.col("tracked.{}".format(id_col)).alias(id_col),
            )
            .withColumn(id_col, F.sha2(F.concat(F.col(input_col), F.col(id_col)), 256))
            .withColumn(output_col, F.struct([F.col("bbox"), F.col(id_col)]))
            .groupBy(input_col, frames_col, detections_col)
            .agg(F.collect_list(output_col).alias(output_col))
            .orderBy(input_col, frames_col, detections_col)
        )


detectTracker = DetectionTracker(inputCol="video_uri", outputCol="tracked_detections")
print(type(detectTracker))

detectTracker.transform(df)
final = track_detections(df)

print("Final dataframe")
final.select("tracked_detections").show(100, truncate=False)

Output :

[<Row('../data/video_files/faces/production_id_3761466 (2160p).mp4')>]
Initial dataframe
+-----------------------------------------------------------+
|video_uri                                                  |
+-----------------------------------------------------------+
|../data/video_files/faces/production_id_3761466 (2160p).mp4|
+-----------------------------------------------------------+

With Metadata
+-----------------------------------------------------------+------------------------+
|video_uri                                                  |metadata                |
+-----------------------------------------------------------+------------------------+
|../data/video_files/faces/production_id_3761466 (2160p).mp4|{3840, 2160, 288, 11.52}|
+-----------------------------------------------------------+------------------------+

<class '__main__.DetectionTracker'>

+---------------------------------------------------------------------------------------------+
|tracked_detections                                                                           |
+---------------------------------------------------------------------------------------------+
|[{{649, 1810, 1204, 2160}, 56943f0cdeb96031c966fac39ef82dc8cc9761a5a2cf9cbf5740f9aeae842c17}]|
|[{{678, 1777, 1233, 2160}, 56943f0cdeb96031c966fac39ef82dc8cc9761a5a2cf9cbf5740f9aeae842c17}]|
|[{{725, 1774, 1280, 2160}, 56943f0cdeb96031c966fac39ef82dc8cc9761a5a2cf9cbf5740f9aeae842c17}]|
|[{{728, 1760, 1283, 2160}, 56943f0cdeb96031c966fac39ef82dc8cc9761a5a2cf9cbf5740f9aeae842c17}]|
+---------------------------------------------------------------------------------------------+

Upvotes: 2

Related Questions