Reputation: 10993
This isn't a show-stopping programming problem as such, but perhaps more of a design pattern issue. I'd have thought it'd be a common design issue on embedded resource-limited systems, but none of the questions I found so far on SO seem relevant (but please point out anything relevant that I could have missed).
Essentially, I'm trying to work out the best strategy of estimating the largest buffer size required by some writer function, when that writer function's output isn't fixed, particularly because some of the data are text strings of variable length.
This is a C application that runs on a small ARM micro. The application needs to send various message types via TCP socket. When I want to send a TCP packet, the TCP stack (Keil RL) provides me with a buffer (which the library allocates from its own pool) into which I may write the packet data payload. That buffer size depends of course on the MSS; so let's assume it's 1460 at most, but it could be smaller.
Once I have this buffer, I pass this buffer and its length to a writer function, which in turn may call various nested writer functions in order to build the complete message. The reason for this structure is because I'm actually generating a small XML document, where each writer function typically generates a specific XML element. Each writer function wants to write a number of bytes to my allocated TCP packet buffer. I only know exactly how many bytes a given writer function writes at run-time, because some of the encapsulated content depends on user-defined text strings of variable length.
Some messages need to be around (say) 2K in size, meaning they're likely to be split across at least two TCP packet send operations. Those messages will be constructed by calling a series of writer functions that produce, say, a hundred bytes at a time.
Prior to making a call to each writer function, or perhaps within the writer function itself, I initially need to compare the buffer space available with how much that writer function requires; and if there isn't enough space available, then transmit that packet and continue writing into a fresh packet later.
Possible solutions I am considering are:
Use another much larger buffer to write everything into initially. This isn't preferred because of resource constraints. Furthermore, I would still wish for a means to algorithmically work out how much space I need by my message writer functions.
At compile time, produce a 'worst case size' constant for each writer function. Each writer function typically generates an XML element such as <START_TAG>[string]</START_TAG>
, so I could have something like: #define SPACE_NEEDED ( START_TAG_LENGTH + START_TAG_LENGTH + MAX_STRING_LENGTH + SOME_MARGIN )
. All of my content writer functions are picked out of a table of function pointers anyway, so I could have the worst-case size estimate constants for each writer function exist as a new column in that table. At run-time, I check the buffer room against that estimate constant. This probably my favourite solution at the moment. The only downside is that it does rely on correct maintenance to make it work.
My writer functions provide a special 'dummy run' mode where they run though and calculate how many bytes they want to write but don't write anything. This could be achieved by perhaps simply sending NULL in place of the buffer pointer to the function, in which case the functions's return value (which usually states amount written to buffer) just states how much it wants to write. The only thing I don't like about this is that, between the 'dummy' and 'real' call, the underlying data could - at least in theory - change. A possible solution for that could be to statically capture the underlying data.
Thanks in advance for any thoughts and comments.
Solution
Something I had actually already started doing since posting the question was to make each content writer function accept a state, or 'iteration' parameter, which allows the writer to be called many times over by the TCP send function. The writer is called until it flags that it has no more to write. If the TCP send function decides after a certain iteration that the buffer is now nearing full, it sends the packet and then the process continues later with a new packet buffer. This technique is very similar I think to Max's answer, which I've therefore accepted.
A key thing is that on each iteration, a content writer must be designed so that it won't write more than LENGTH
bytes to the buffer; and after each call to the writer, the TCP send function will check that it has LENGTH
room left in the packet buffer before calling the writer again. If not, it continues in a new packet.
Another step I did was to have a serious think about how I structure my message headers. It became apparent that, like I suppose with almost all protocols that use TCP, it is essential to implement into the application protocol some means of indicating the total message length. The reason for this is because TCP is a stream-based protocol, not a packet-based protocol. This is again where it got a bit of a headache because I needed some upfront means of knowing the total message length for insertion into the start header. The simple solution to this was to insert a message header into the start of every sent TCP packet, rather than only at the start of the application protocol message (which may of course span several TCP sockets), and basically implement fragmentation. So, in the header, I implemented two flags: a fragment
flag, and a last-fragment
flag. Therefore the length field in each header only needs to state the size of the payload in the particular packet. At the receiving end, individual header+payload chunks are read out of the stream and then reassembled into a complete protocol message.
This of course is no doubt very simplistically how HTTP and so many other protocols work over TCP. It's just quite interesting that, only once I've attempted to write a robust protocol that works over TCP, have I started to realise the importance of really thinking the your message structure in terms of headers, framing, and so forth so that it works over a stream protocol.
Upvotes: 2
Views: 464
Reputation: 2131
I had a related problem in a much smaller embedded system, running on a PIC 16 micro-controller (and written in assembly language, rather than C). My 'buffer size' was always going to be the two byte UART transmit queue, and I had only one 'writer' function, which was walking a DOM and emitting its XML serialisation.
The solution I came up with was to turn the problem 'inside out'. The writer function becomes a task: each time it is called it writes as many bytes as it can (which may be >2 depending on the serial data transmission rate) until the transmit buffer is full, then it returns. However, it remembers, in a state variable, how far it had got through the DOM. The next time it is called, it caries on from the point previously reached. The writer task is called repeatedly from a loop. If there is no free buffer space, it returns immediately without changing its state. It is called repeatedly from an infinite loop, which acts as a round-robin scheduler for this task and the others in the system. Each time round the loop, there is a delay which waits for the TMR0 timer to overflow. So each task gets called exactly once in a fixed time slice.
In my implementation, the data is transmitted by a TxEmpty interrupt routine, but it could also be sent by another task.
I guess the 'pattern' here is that one role of the program counter is to hold the current state of the flow of control, and that this role can be abstracted away from the PC to another data structure.
Obviously, this isn't immediately applicable to your larger, higher level system. But it is a different way of looking at the problem, which may spark your own particulr insight.
Good luck!
Upvotes: 1