Reputation: 7042
What is the basic difference between Memcached and Hadoop? Microsoft seems to do memcached with the Windows Server AppFabric.
I know memcached is a giant key value hashing function using multiple servers. What is hadoop and how is hadoop different from memcached? Is it used to store data? objects? I need to save giant in memory objects, but it seems like I need some kind of way of splitting this giant objects into "chunks" like people are talking about. When I look into splitting the object into bytes, it seems like Hadoop is popping up.
I have a giant class in memory with upwards of 100 mb in memory. I need to replicate this object, cache this object in some fashion. When I look into caching this monster object, it seems like I need to split it like how google is doing. How is google doing this. How can hadoop help me in this regard. My objects are not simple structured data. It has references up and down the classes inside, etc.
Any idea, pointers, thoughts, guesses are helpful.
Thanks.
Upvotes: 1
Views: 3870
Reputation:
Picking a good solution depends on requirements of the intended use, say the difference between storing legal documents forever to a free music service. For example, can the objects be recreated or are they uniquely special? Would they be requiring further processing steps (i.e., MapReduce)? How quickly does an object (or a slice of it) need to be retrieved? Answers to these questions would affect the solution set widely.
If objects can be recreated quickly enough, a simple solution might be to use Memcached as you mentioned across many machines totaling sufficient ram. For adding persistence to this later, CouchBase (formerly Membase) is worth a look and used in production for very large game platforms.
If objects CANNOT be recreated, determine if S3 and other cloud file providers would not meet requirements for now. For high-throuput access, consider one of the several distributed, parallel, fault-tolerant filesystem solutions: DDN (has GPFS and Lustre gear), Panasas (pNFS). I've used DDN gear and it had a better price point than Panasas. Both provide good solutions that are much more supportable than a DIY BackBlaze.
There are some mostly free implementations of distributed, parallel filesystems such as GlusterFS and Ceph that are gaining traction. Ceph touts an S3-compatible gateway and can use BTRFS (future replacement for Lustre; getting closer to production ready). Ceph architecture and presentations. Gluster's advantage is the option for commercial support, although there could be a vendor supporting Ceph deployments. Hadoop's HDFS may be comparable but I have not evaluated it recently.
Upvotes: 0
Reputation: 1
You need to use pure Hadoop for what you need (no HBASE, HIVE etc). The Map Reduce mechanism will split your object into many chunks and store it in Hadoop. The tutorial for Map Reduce is here. However, don't forget that Hadoop is, in the first place, a solution for massive compute and storage. In your case I would also recommend checking Membase which is implementation of Memcached with addition storage capabilities. You will not be able to map reduce with memcached/membase but those are still distributed and your object may be cached in a cloud fashion.
Upvotes: 0
Reputation: 68
memcached [ http://en.wikipedia.org/wiki/Memcached ] is a single focused distributed caching technology.
apache hadoop [ http://hadoop.apache.org/ ] is a framework for distributed data processing - targeted at google/amazon scale many terrabytes of data. It includes sub-projects for the different areas of this problem - distributed database, algorithm for distributed processing, reporting/querying, data-flow language.
The two technologies tackle different problems. One is for caching (small or large items) across a cluster. And the second is for processing large items across a cluster. From your question it sounds like memcached is more suited to your problem.
Upvotes: 4
Reputation: 153
Memcache wont work due to its limit on the value of object stored. memcache faq . I read some place that this limit can be increased to 10 mb but i am unable to find the link.
For your use case I suggest giving mongoDB a try. mongoDb faq . MongoDB can be used as alternative to memcache. It provides GridFS for storing large file systems in the DB.
Upvotes: 1