Reputation: 920
I am building a CausalForest where i have Treatment Variable which is multi categorical [0,1,2,3,5] and the outcome is [0,1], where 1 being severe.
econml_causalForest = CausalForestDML(model_y=RandomForestRegressor(random_state=42),
model_t=RandomForestClassifier(min_samples_leaf=10, random_state=42),
discrete_treatment=True, cv=3, random_state=123
)
econml_causalForest.fit(Y=y_train, T=T_train, X=X_train, W=None)
print(f'econml_ATE_forest: {econml_causalForest.ate(X_test, T0=0, T1=5)}')
print(econml_causalForest.ate_inference(X))
got the results as below
econml_ATE_forest: 0.27076799164408494
Uncertainty of Mean Point Estimate
===============================================================
mean_point stderr_mean zstat pvalue ci_mean_lower ci_mean_upper
---------------------------------------------------------------
0.109 1.059 0.103 0.918 -1.968 2.185
Distribution of Point Estimate
=========================================
std_point pct_point_lower pct_point_upper
-----------------------------------------
0.946 -0.263 0.233
Total Variance of Point Estimate
==========================================
stderr_point ci_point_lower ci_point_upper
------------------------------------------
1.421 -0.374 0.377
Here how to intrepret the point estimates and CI results of ATE?
Upvotes: 0
Views: 24