Reputation: 1
I try to use langchain load_evaluator() with local LLM Ollama. But I don't understand which model I should use.
from langchain.evaluation import load_evaluator
from langchain.chat_models import ChatOllama
from langchain.llms import Ollama
from langchain.embeddings import HuggingFaceEmbeddings
#This is work
evaluator = load_evaluator("labeled_score_string", llm=ChatOllama(model="llama2"))
evaluator = load_evaluator("pairwise_string", llm=Ollama(model="llama2"))
#This is not
evaluator = load_evaluator("pairwise_embedding_distance", llm=HuggingFaceEmbeddings())
evaluator = load_evaluator("pairwise_embedding_distance", llm=Ollama(model="llama2"))
Upvotes: 0
Views: 227
Reputation: 21
I think we have same problem and I found this
embedding_function = OllamaEmbeddings(model="llama3.2:3b")
evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embedding_function)
instead asking for "llm" parameter, it should provide "embeddings" param
Upvotes: 0