Reputation: 11
Setting up an embed model tool with llama index using local Mistral model to parse a pdf file to be able to query from vector index but getting a connection error when trying to run a query_engine.query test.
main.py listed below - my API is labeled correctly in a .env file.
from llama_index.llms.ollama import Ollama
from llama_parse import LlamaParse
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, PromptTemplate
from llama_index.core.embeddings import resolve_embed_model
from dotenv import load_dotenv
load_dotenv()
llm = Ollama(model="mistral", request_timeout=30.0)
parser = LlamaParse(result_type="markdown")
file_extractor = {".pdf": parser}
documents = SimpleDirectoryReader("./data", file_extractor=file_extractor).load_data()
embed_model= resolve_embed_model("local:BAAI/bge-m3")
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
query_engine = vector_index.as_query_engine(llm=llm)
result = query_engine.query("what are some of the routes in the api?")
print(result)
I expected it to go into my data directory, parse the pdf file there, send it to the vector index, the use it to query a question about the pdf to get a response but instead i'm getting a connection error -
httpx.ConnectError: [Errno 61] Connection refused
Upvotes: 1
Views: 911
Reputation: 51
Looks like the Ollama server is not on. Try installing Ollama and running it by:
curl -fsSL https://ollama.com/install.sh | sh
ollama serve
Upvotes: 0