Reputation: 1
Loading a fine tuned Seq2Seq MarianMT model gives wrong predictions
I initialized and trained the following model:
model = Seq2SeqModel(
encoder_decoder_type="marian",
encoder_decoder_name="Helsinki-NLP/opus-mt-en-mul",
args=model_args,
use_cuda=True,
)
After training, model.predict(['this is a test'])
gives me desired output.
However, when I loaded back this model to make prediction. The output is off:
from transformers import MarianMTModel
my_model = MarianMTModel.from_pretrained('outputs/best_model')
translated = my_model.generate(**tokenizer(['this is a test'], return_tensors="pt", padding=True))
[tokenizer.decode(t, skip_special_tokens=True) for t in translated]
Anything i missed?
Upvotes: 0
Views: 12