Reputation: 1
Problem: Loading a saved PyTorch model after few days giving very bad results.
Hamming score suddenly dropped from 75% to 0.1% and flat score dropped from 65% to 0.3%.
torch.save(model, 'models/model_0.pth')
model = torch.load('models/model_0.pth')
class DistilBERTClass(torch.nn.Module):
def __init__(self):
super(DistilBERTClass, self).__init__()
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
# Unfreeze all layers except the last layer
for name, param in self.l1.named_parameters():
param.requires_grad = True
self.pre_classifier = torch.nn.Linear(768, 768)
self.dropout = torch.nn.Dropout(0.1)
self.classifier = torch.nn.Linear(768, 26)
def forward(self, input_ids, attention_mask, token_type_ids):
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
hidden_state = output_1[0]
pooler = torch.mean(hidden_state, dim=1)
pooler = self.pre_classifier(pooler)
pooler = torch.nn.Tanh()(pooler)
pooler = self.dropout(pooler)
output = self.classifier(pooler)
output = F.sigmoid(output)
return output
model = DistilBERTClass()
model.to(device)
Upvotes: 0
Views: 45