Reputation: 1
For my graduation project, I need to model and compute the water surface area of different reservoirs located in Vietnam. The temporal scale should be 10-days so the sentinel-1 is taken as baseline for the extraction of the water surface area. Collecting the needed images as well as filtering background scatter out goes well. Although defining a threshold is not working properly.
Below is the code I use to determine the surface area of water for the Ban Chat dam in Vietnam. The Otsu algorithm gives a threshold value that is too high (towards positive), causing the water surface area to be vastly overestimated. How can I modify this code to determine a sufficient Otsu threshold?
var dt = table;
// Function to convert from dB to linear
function toNatural(img) {
return ee.Image(10.0).pow(img.select(0).divide(10.0));
}
// Otsu threshold calculation function
var otsu = function(histogram) {
var counts = ee.Array(ee.Dictionary(histogram).get('histogram'));
var means = ee.Array(ee.Dictionary(histogram).get('bucketMeans'));
var size = means.length().get([0]);
var total = counts.reduce(ee.Reducer.sum(), [0]).get([0]);
var sum = means.multiply(counts).reduce(ee.Reducer.sum(), [0]).get([0]);
var mean = sum.divide(total);
var indices = ee.List.sequence(1, size);
// Compute between sum of squares, where each mean partitions the data.
var bss = indices.map(function(i) {
var aCounts = counts.slice(0, 0, i);
var aCount = aCounts.reduce(ee.Reducer.sum(), [0]).get([0]);
var aMeans = means.slice(0, 0, i);
var aMean = aMeans.multiply(aCounts)
.reduce(ee.Reducer.sum(), [0]).get([0])
.divide(aCount);
var bCount = total.subtract(aCount);
var bMean = sum.subtract(aCount.multiply(aMean)).divide(bCount);
return aCount.multiply(aMean.subtract(mean).pow(2)).add(
bCount.multiply(bMean.subtract(mean).pow(2)));
});
print("otsu_function", ui.Chart.array.values(ee.Array(bss), 0, means));
// Return the mean value corresponding to the maximum BSS.
return means.sort(bss).get([-1]);
};
// Function to convert to dB
function toDB(img) {
return ee.Image(img).log10().multiply(10.0);
}
// Applying a Refined Lee Speckle filter
function RefinedLee(img) {
// Function body (implementation of Refined Lee Speckle filter)
}
for (var j = 2016; j <= 2023; j++) {
//Define the times of interest
var monthStartDate = ee.Date.fromYMD(j, 05, 01);
var monthEndDate = ee.Date.fromYMD(j, 05, 15);
//Collect the Sentinel-1 images for the specified time period
var collection = ee.ImageCollection('COPERNICUS/S1_GRD')
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
.filter(ee.Filter.eq('instrumentMode', 'IW'))
.filter(ee.Filter.or(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING'),
ee.Filter.eq('orbitProperties_pass', 'ASCENDING')));
var before = collection.filter(ee.Filter.date(monthStartDate, monthEndDate)).filterBounds(dt);
var before_image = before.select('VH').mosaic().clip(dt);
// Apply Refined Lee Speckle filter to the image
var before_filtered = ee.Image(toDB(RefinedLee(toNatural(before_image))));
// Plot histogram
var histogram = ui.Chart.image.histogram({
image: before_filtered,
region: dt,
scale: 10,
maxBuckets: 1000
});
print("histogram", histogram);
// Compute histogram
var histogramDict = before_filtered.reduceRegion({
reducer: ee.Reducer.histogram(255)
.combine('mean', null, true)
.combine('variance', null, true),
geometry: dt,
scale: 10,
bestEffort: true
});
print("histogramDics", histogramDict)
//Define the otsu-threshold for every specific image
var threshold = otsu(histogramDict.get('sum_histogram'));
// Define when a certain cell is seen as water, based on the reflectance threshold
var water_threshold = threshold
var water = before_filtered.lt(water_threshold);
var water_mask = water.updateMask(water.eq(1));
print('Total District Area (km2)', dt.geometry().area().divide(1000000));
// Remove isolated pixels
// connectedPixelCount is Zoom dependent, so visual result will vary
var connectedPixelThreshold = 25;
var connections = water_mask.connectedPixelCount(25);
var disconnectedAreas = connections.lt(connectedPixelThreshold);
var disconnectedAreasMask = disconnectedAreas.not();
var water_mask = water_mask.updateMask(disconnectedAreasMask);
//Center map to AOI
Map.centerObject(dt, 14);
// Define the surface area
var stats = water_mask.multiply(ee.Image.pixelArea()).reduceRegion({
reducer: ee.Reducer.sum(),
geometry: dt,
scale: 10,
maxPixels: 1e13,
tileScale: 16
});
// Print the surface area
//print(stats);
var water_area = ee.Number(stats.get('sum')).divide(1000000);
print(j, water_area);
}
//############################
// Speckle Filtering Functions
//############################
// Function to convert from d
function toNatural(img) {
return ee.Image(10.0).pow(img.select(0).divide(10.0));
}
//Function to convert to dB
function toDB(img) {
return ee.Image(img).log10().multiply(10.0);
}
//Apllying a Refined Lee Speckle filter as coded in the SNAP 3.0 S1TBX:
//https://github.com/senbox-org/s1tbx/blob/master/s1tbx-op-sar-processing/src/main/java/org/esa/s1tbx/sar/gpf/filtering/SpeckleFilters/RefinedLee.java
//Adapted by Guido Lemoine
// by Guido Lemoine
function RefinedLee(img) {
// img must be in natural units, i.e. not in dB!
// Set up 3x3 kernels
var weights3 = ee.List.repeat(ee.List.repeat(1,3),3);
var kernel3 = ee.Kernel.fixed(3,3, weights3, 1, 1, false);
var mean3 = img.reduceNeighborhood(ee.Reducer.mean(), kernel3);
var variance3 = img.reduceNeighborhood(ee.Reducer.variance(), kernel3);
// Use a sample of the 3x3 windows inside a 7x7 windows to determine gradients and directions
var sample_weights = ee.List([[0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0], [0,1,0,1,0,1,0], [0,0,0,0,0,0,0], [0,1,0,1,0,1,0],[0,0,0,0,0,0,0]]);
var sample_kernel = ee.Kernel.fixed(7,7, sample_weights, 3,3, false);
// Calculate mean and variance for the sampled windows and store as 9 bands
var sample_mean = mean3.neighborhoodToBands(sample_kernel);
var sample_var = variance3.neighborhoodToBands(sample_kernel);
// Determine the 4 gradients for the sampled windows
var gradients = sample_mean.select(1).subtract(sample_mean.select(7)).abs();
gradients = gradients.addBands(sample_mean.select(6).subtract(sample_mean.select(2)).abs());
gradients = gradients.addBands(sample_mean.select(3).subtract(sample_mean.select(5)).abs());
gradients = gradients.addBands(sample_mean.select(0).subtract(sample_mean.select(8)).abs());
// And find the maximum gradient amongst gradient bands
var max_gradient = gradients.reduce(ee.Reducer.max());
// Create a mask for band pixels that are the maximum gradient
var gradmask = gradients.eq(max_gradient);
// duplicate gradmask bands: each gradient represents 2 directions
gradmask = gradmask.addBands(gradmask);
// Determine the 8 directions
var directions = sample_mean.select(1).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(7))).multiply(1);
directions = directions.addBands(sample_mean.select(6).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(2))).multiply(2));
directions = directions.addBands(sample_mean.select(3).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(5))).multiply(3));
directions = directions.addBands(sample_mean.select(0).subtract(sample_mean.select(4)).gt(sample_mean.select(4).subtract(sample_mean.select(8))).multiply(4));
// The next 4 are the not() of the previous 4
directions = directions.addBands(directions.select(0).not().multiply(5));
directions = directions.addBands(directions.select(1).not().multiply(6));
directions = directions.addBands(directions.select(2).not().multiply(7));
directions = directions.addBands(directions.select(3).not().multiply(8));
// Mask all values that are not 1-8
directions = directions.updateMask(gradmask);
// "collapse" the stack into a singe band image (due to masking, each pixel has just one value (1-8) in it's directional band, and is otherwise masked)
directions = directions.reduce(ee.Reducer.sum());
//var pal = ['ffffff','ff0000','ffff00', '00ff00', '00ffff', '0000ff', 'ff00ff', '000000'];
//Map.addLayer(directions.reduce(ee.Reducer.sum()), {min:1, max:8, palette: pal}, 'Directions', false);
var sample_stats = sample_var.divide(sample_mean.multiply(sample_mean));
// Calculate localNoiseVariance
var sigmaV = sample_stats.toArray().arraySort().arraySlice(0,0,5).arrayReduce(ee.Reducer.mean(), [0]);
// Set up the 7*7 kernels for directional statistics
var rect_weights = ee.List.repeat(ee.List.repeat(0,7),3).cat(ee.List.repeat(ee.List.repeat(1,7),4));
var diag_weights = ee.List([[1,0,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,1,0,0,0,0],
[1,1,1,1,0,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0], [1,1,1,1,1,1,1]]);
var rect_kernel = ee.Kernel.fixed(7,7, rect_weights, 3, 3, false);
var diag_kernel = ee.Kernel.fixed(7,7, diag_weights, 3, 3, false);
// Create stacks for mean and variance using the original kernels. Mask with relevant direction.
var dir_mean = img.reduceNeighborhood(ee.Reducer.mean(), rect_kernel).updateMask(directions.eq(1));
var dir_var = img.reduceNeighborhood(ee.Reducer.variance(), rect_kernel).updateMask(directions.eq(1));
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), diag_kernel).updateMask(directions.eq(2)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), diag_kernel).updateMask(directions.eq(2)));
// and add the bands for rotated kernels
for (var i=1; i<4; i++) {
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), rect_kernel.rotate(i)).updateMask(directions.eq(2*i+1)));
dir_mean = dir_mean.addBands(img.reduceNeighborhood(ee.Reducer.mean(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
dir_var = dir_var.addBands(img.reduceNeighborhood(ee.Reducer.variance(), diag_kernel.rotate(i)).updateMask(directions.eq(2*i+2)));
}
// "collapse" the stack into a single band image (due to masking, each pixel has just one value in it's directional band, and is otherwise masked)
dir_mean = dir_mean.reduce(ee.Reducer.sum());
dir_var = dir_var.reduce(ee.Reducer.sum());
// A finally generate the filtered value
var varX = dir_var.subtract(dir_mean.multiply(dir_mean).multiply(sigmaV)).divide(sigmaV.add(1.0));
var b = varX.divide(dir_var);
var result = dir_mean.add(b.multiply(img.subtract(dir_mean)));
return(result.arrayFlatten([['sum']]));
}
I tried to do some bias corrections on the threshold. Both relative and absolute corrections did not result in better results of the model.
Upvotes: 0
Views: 82