Reputation: 186
In the R package mixtools
, the normalmixEM
function is used to fit Gaussian mixture models to data using an EM algorithm, e.g.;
library(mixtools)
data(faithful)
attach(faithful)
set.seed(100)
system.time(out<-normalmixEM(waiting, arbvar = FALSE, epsilon = 1e-03))
Looking at the output, the fit object includes a matrix of posterior probabilities for the observations:
out$posterior[1:5,]
comp.1 comp.2
[1,] 1.023014e-04 0.9998976986
[2,] 9.999083e-01 0.0000917408
[3,] 4.108021e-03 0.9958919788
[4,] 9.671243e-01 0.0328757394
[5,] 1.211525e-06 0.9999987885
This specific output is not produced by all mixture distribution fitting packages, e.g. mixdist
, and I'm wondering if it is possible to derive these probabilities using the parameters from the mixture of Gaussians (e.g. mu, sigma, and lambda)?
Upvotes: 0
Views: 57