NikSp
NikSp

Reputation: 1549

Efficiently compute distance between two POINTS using geodesic and polars for large scale datasets

I have created a dummy sample of ~10_000 rows with two columns (pikcup and dropoff location points - encoded as string).

I read the sample into a polars Dataframe with the following command:

df = pl.read_csv("./taxi_coordinates.csv")

I would like to efficiently compute the distance between those points using the module from geopy.distance import geodesic

Please note that I am trying to discover the most efficient approach because my original sample is over 30 million rows.

My approach using map_rows()

def compute_coordinates_v2(df:pl.DataFrame, col:str) -> pl.DataFrame:
    target_col:str = 'pu_polygon_centroid' if col == 'pickup' else 'do_polygon_centroid'
    location_data:str = f'{col}_location_cleaned'
    coordinates:str = f'{col}_coordinates'
    df = df.with_columns(
        pl.col(target_col).str.replace_all(r'POINT \(|\)', '').alias(location_data)
    ).with_columns(
        pl.col(location_data).str.split(' ').alias(coordinates)
    )
    return df

df = compute_coordinates_v2(df, 'pickup')
df = compute_coordinates_v2(df, 'dropoff')

The above operation will generate two columns of list type

shape: (5, 1)
┌───────────────────────────────────┐
│ pickup_coordinates                │
│ ---                               │
│ list[str]                         │
╞═══════════════════════════════════╡
│ ["-73.95701169835736", "40.78043… │
│ ["-73.95701169835736", "40.78043… │
│ ["-73.95701169835736", "40.78043… │
│ ["-73.9656345353807", "40.768615… │
│ ["-73.9924375369761", "40.748497… │
└───────────────────────────────────┘
shape: (5, 1)
┌───────────────────────────────────┐
│ dropoff_coordinates               │
│ ---                               │
│ list[str]                         │
╞═══════════════════════════════════╡
│ ["-73.9656345353807", "40.768615… │
│ ["-73.95701169835736", "40.78043… │
│ ["-73.95701169835736", "40.78043… │
│ ["-73.9924375369761", "40.748497… │
│ ["-74.007879708664", "40.7177727… │
└───────────────────────────────────┘

Now to compute the distance I use the following func

def compute_centroid_distance_v2(row):
    if (row[0][0]) and (row[0][1]) and (row[1][0]) and (row[1][1]):
        centroid_distance = geodesic(
            (row[0][1], row[0][0]), #(latitude, longitude)
            (row[1][1], row[1][0])
        ).kilometers
    else:
        centroid_distance = 0.0
    return centroid_distance

df = df.with_columns(
        df.select(["pickup_coordinates", "dropoff_coordinates"]).map_rows(compute_centroid_distance_v2).rename({'map': "centroid_distance"})
    )

On a benchmark of 30 million rows the map_rows took approximately 1.5 hours.

Obviously something like

df = df.with_columns(
        pl.col("pickup_coordinates").list.first().cast(pl.Float32).alias('pickup_longitude'),
        pl.col("pickup_coordinates").list.last().cast(pl.Float32).alias('pickup_latitude'),
        pl.col("dropoff_coordinates").list.first().cast(pl.Float32).alias('dropoff_longitude'),
        pl.col("dropoff_coordinates").list.last().cast(pl.Float32).alias('dropoff_latitude')
    ).with_columns(
        coords = geodesic( (pl.col("pickup_latitude"), pl.col('pickup_longitude')),  (pl.col("dropoff_latitude"), pl.col('dropoff_longitude'))).kilometers
    )

didn't work because polars tries to apply a logical operation on (pl.col("pickup_latitude"), pl.col('pickup_longitude')

Thus, I would like to understand if map_rows/map_elements is my only solution or if there is a different work-around that could speed up the computations.

Upvotes: 2

Views: 459

Answers (2)

NikSp
NikSp

Reputation: 1549

I have computed the haversine distance based on my data points and the solution provided here (in case someone wants to implement this)

def compute_haversine_disntance(df:pl.DataFrame, R:np.float64, coordinates:dict) -> pl.DataFrame:
    pl.Config.set_fmt_float("full")
    multiplier:float = np.pi/180
    rad_lat1:pl.Expr = (pl.col(coordinates["pickup_points"]).list.last().cast(pl.Float64) * (multiplier))
    rad_lat2:pl.Expr = (pl.col(coordinates["dropoff_points"]).list.last().cast(pl.Float64) * (multiplier))
    rad_lng1:pl.Expr = (pl.col(coordinates["pickup_points"]).list.first().cast(pl.Float64) * (multiplier))
    rad_lng2:pl.Expr = (pl.col(coordinates["dropoff_points"]).list.first().cast(pl.Float64) * (multiplier))
    haversin:pl.Expr = (
        (rad_lat2 - rad_lat1).truediv(2).sin().pow(2) +
        ((rad_lat1.cos() * rad_lat2.cos()) * (rad_lng2 - rad_lng1).truediv(2).sin().pow(2))
    ).cast(pl.Float64)
    df = df.with_columns(
        (
            2 * R * (haversin.sqrt().arcsin())
        ).cast(pl.Float64).alias("haversine_centroid_distance")
    )
    return df

However I have some differences on the final results compared to this calculator here. Even though my formula is the same to the one used in the calculator I have slight different results. For example the first pair of points:

  • lat1: 0.7117528862292272 (radians)
  • lat2: 0.7115465664360616
  • lng1: -1.2907933590722993
  • lng2: -1.2909438559692195

= has 1.34 distance based on my calculations while the calculator computes a distance of 1.501 (closer to geodesic)

Fixed the mismatching result cos(lat1)*cos(lat2) I was using cos(lng1)*cos(lng2) mistakenly I was computing the cosine of longitudes instead of latitudes. The result is the same to the calculator site I posted above.

Benchmark results:

  • 3 million rows with map_rows() ~ 3 minutes
  • 3 million rows with polars API ~ .05 seconds

Upvotes: 1

jqurious
jqurious

Reputation: 21580

As in the answer from https://stackoverflow.com/a/76265233/ you can attempt to replicate geodesic() using Polars Expressions.

Another potential option could be DuckDB, which can input/output Polars DataFrames easily.

DuckDB has a SPATIAL extension: https://duckdb.org/2023/04/28/spatial.html

duckdb.sql("install spatial") # needed once

If I increase your example for a simple comparison:

df_big = pl.concat([df] * 10)

Using your map_rows approach:

(df_big
  .select("pickup_coordinates", "dropoff_coordinates")
  .map_rows(compute_centroid_distance_v2)
  .rename({"map": "centroid_distance"})
)
shape: (98_510, 1)
┌───────────────────┐
│ centroid_distance │
│ ---               │
│ f64               │
╞═══════════════════╡
│ 1.50107           │
│ 0.0               │
│ 0.0               │
│ 3.18019           │
│ 3.652772          │
│ …                 │
│ 2.376629          │
│ 1.440797          │
│ 4.583181          │
│ 0.53954           │
│ 2.589928          │
└───────────────────┘

Elapsed time: 4.52725 seconds

Using duckdb:

duckdb.sql("load spatial")
duckdb.sql("""
from df_big
select
   st_distance_spheroid(
      st_point(
         pickup_coordinates[2]::float, -- NOTE: array indexing is 1-based
         pickup_coordinates[1]::float
      ),
      st_point(
         dropoff_coordinates[2]::float,
         dropoff_coordinates[1]::float
      )
   ) as geodesic
""") .pl()
shape: (98_510, 1)
┌─────────────┐
│ geodesic    │
│ ---         │
│ f64         │
╞═════════════╡
│ 1501.364    │
│ 0.0         │
│ 0.0         │
│ 3180.189287 │
│ 3652.673199 │
│ …           │
│ 2376.786018 │
│ 1440.740571 │
│ 4583.039701 │
│ 539.144276  │
│ 2590.085087 │
└─────────────┘

Elapsed time: 0.10821 seconds

I don't know too much about spatial data, so I'm not entirely sure why there are slight differences in the outputs.

It also seems like you could use st_read() to load the data directly into duckdb instead of having to manually chop it up with Polars first.

Upvotes: 1

Related Questions