Reputation: 3
I'm trying to improve the visualization of this figure by separating the x-axis into nested subcategories of samples. I'm not able to use ggplot fill for this since I've already used pivot_longer() to include 6 types of output. The solution also has to allow a free scale view using facet_wrap() to examine trends between individual protein components.
Have:
Want:
Attempt:
Data frame:
>head(data)
> ShortName Mod Growth Day Group Conc
>1 CTRL_D02 CTRL CC 2 Protein1 0.013072917
>2 CTRL_D02 CTRL CC 2 Protein2 0.000000000
>3 CTRL_D02 CTRL CC 2 Protein3 0.004661458
>4 CTRL_D02 CTRL CC 2 Protein4 0.000000000
>5 CTRL_D02 CTRL CC 2 Protein5 0.000000000
>6 CTRL_D02 CTRL CC 2 Protein6 0.025885417
>CC <- data %>% slice(1:144)
>LG <- data %>% slice(145:210)
ggplot, stacked bar graph to view broad quantity of all proteins
p0 <- ggplot(CC) +
geom_col(aes(x = ShortName, y = Conc, fill = Group)) +
theme_clean() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
labs(y = "Concentration", x = "Sample", fill = "Composition")
ggplot, view trends of individual protein components
p0.1 <- p0 +
facet_wrap(. ~ Group, scales = "free_y") +
theme(legend.position="none")
Upvotes: 0
Views: 175
Reputation: 1881
The way I've done this is to create a numerical variable in the dataframe that I can map to the x-axis, and then re-create the labels in scale_x_continuous by looking up the labels using that value. Here's a crude example using a fake dataset.
set.seed(123)
data <- data.frame(
ShortName = sample(c( "D02", "D04", "D07", "D09", "D11", "D14"), 1250, replace = TRUE),
Mod = sample(c("CTRL", "P2E8", "P2G7", "poly"), 1250, replace = TRUE),
#Growth = sample(c("CC", "LG"), 1250, replace = TRUE),
#Day = sample(2:14, 1250, replace = TRUE),
Group = sample(c("Protein1", "Protein2", "Protein3", "Protein4", "Protein5", "Protein6"), 1250, replace = TRUE),
Conc = runif(1250, 0, 1)
) %>%
summarise(.by = c(-Conc), Conc = mean(Conc))
data <- data %>%
arrange(ShortName, Mod, Group) %>%
mutate(
ShortName = factor(ShortName),
Mod = factor(Mod),
xpos = (as.numeric(Mod))* 7 + (as.numeric(ShortName)),
l = paste(ShortName, Mod, sep = "_")
)
getlabel <- function(x){
d <- (data[data$xpos == x,c("ShortName","Mod")][1,])
paste(d$ShortName, d$Mod, sep = "\n")
}
getlabel <- Vectorize(getlabel)
data %>%
ggplot(aes(x = xpos)) +
geom_col(aes(y = Conc, fill = Group)) +
scale_x_continuous(
breaks = unique(data$xpos),
labels = getlabel(unique(data$xpos))
)+
labs(x = "sample", y = "concentration")
Upvotes: 0
Reputation: 19514
You can use the ggh4x package to do the nesting of the x-axis tick labels.
library(ggplot2); library(ggh4x)
ggplot(data, aes(x=interaction(Day,Mod), Conc, fill = Group)) +
geom_col() +
scale_x_discrete(guide="axis_nested") + # *** ggh4x *** #
facet_grid(~Mod, scales = 'free') +
labs(x="Sample", y="Concentration", fill="Composition",
title="Stacked bar graph of convoluted timecourse") +
#theme_clean() +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
strip.text = element_blank(),
axis.line.x = element_line(),
axis.line.y = element_line(),
legend.box.background = element_rect())
data <- tibble(Day=sample(c('D02','D04','D07','D11','D02','D14'), 210, TRUE),
Mod=sample(c('CTRL','P2E8','P2G7','poly'), 210, TRUE),
Growth=sample(c('CC','LG'), 210, TRUE),
Group=sample(paste0("Protein", 1:6), 210, TRUE, prob=c(10,1,1,1,1,1)),
Conc=runif(210, 0, 0.3))
Upvotes: 1