Reputation: 1
I'm trying to learn some model to better recognize object in my camera(frigate). I prepared some training data and take code from tutorial. It looks promising but now i have a problem with converting my model to TFlight(with integer quantization) as i need to do that before compilation for coral tpu(at least this is what i found in internet). Could you help me with conversion problem. I'm fighting with it couple days and can't make it working.
This is my current error:
Total params: 2,259,265 (8.62 MB)
Trainable params: 1,281 (5.00 KB)
Non-trainable params: 2,257,984 (8.61 MB)
4/4 ━━━━━━━━━━━━━━━━━━━━ 2s 211ms/step - accuracy: 0.8043 - loss: 0.5318
initial loss: 0.53
initial accuracy: 0.81
Epoch 1/5
7/7 ━━━━━━━━━━━━━━━━━━━━ 5s 194ms/step - accuracy: 0.7013 - loss: 0.6271 - val_accuracy: 0.8077 - .............................
Epoch 5/5
7/7 ━━━━━━━━━━━━━━━━━━━━ 1s 83ms/step - accuracy: 0.8150 - loss: 0.5426 - val_accuracy: 0.8173 - val_loss: 0.4871
Error converting model: 'Functional' object has no attribute '_get_save_spec'
and my app code
import matplotlib.pyplot as plt
import os
import tensorflow as tf
BATCH_SIZE = 32
IMG_SIZE = (160, 160)
train_dir = os.path.abspath("./test/train")
validation_dir = os.path.abspath("./test/validation")
train_dataset = tf.keras.utils.image_dataset_from_directory(train_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
validation_dataset = tf.keras.utils.image_dataset_from_directory(validation_dir,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE)
class_names = train_dataset.class_names
plt.figure(figsize=(10, 10))
for images, labels in train_dataset.take(1):
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
val_batches = tf.data.experimental.cardinality(validation_dataset)
test_dataset = validation_dataset.take(val_batches // 5)
validation_dataset = validation_dataset.skip(val_batches // 5)
print('Number of validation batches: %d' % tf.data.experimental.cardinality(validation_dataset))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_dataset))
AUTOTUNE = tf.data.AUTOTUNE
train_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE)
validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)
test_dataset = test_dataset.prefetch(buffer_size=AUTOTUNE)
data_augmentation = tf.keras.Sequential([
tf.keras.layers.RandomFlip('horizontal'),
tf.keras.layers.RandomRotation(0.2),
])
for image, _ in train_dataset.take(1):
plt.figure(figsize=(10, 10))
first_image = image[0]
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
augmented_image = data_augmentation(tf.expand_dims(first_image, 0))
plt.imshow(augmented_image[0] / 255)
plt.axis('off')
preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input
rescale = tf.keras.layers.Rescaling(1./127.5, offset=-1)
# Create the base model from the pre-trained model MobileNet V2
IMG_SHAPE = IMG_SIZE + (3,)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
image_batch, label_batch = next(iter(train_dataset))
feature_batch = base_model(image_batch)
print(feature_batch.shape)
base_model.trainable = False
# Let's take a look at the base model architecture
base_model.summary()
global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
feature_batch_average = global_average_layer(feature_batch)
print(feature_batch_average.shape)
prediction_layer = tf.keras.layers.Dense(1, activation='sigmoid')
prediction_batch = prediction_layer(feature_batch_average)
print(prediction_batch.shape)
inputs = tf.keras.Input(shape=(160, 160, 3))
x = data_augmentation(inputs)
x = preprocess_input(x)
x = base_model(x, training=False)
x = global_average_layer(x)
x = tf.keras.layers.Dropout(0.2)(x)
outputs = prediction_layer(x)
model = tf.keras.Model(inputs, outputs)
model.summary()
len(model.trainable_variables)
tf.keras.utils.plot_model(model, show_shapes=True)
base_learning_rate = 0.0001
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=[tf.keras.metrics.BinaryAccuracy(threshold=0.5, name='accuracy')])
initial_epochs = 5
loss0, accuracy0 = model.evaluate(validation_dataset)
print("initial loss: {:.2f}".format(loss0))
print("initial accuracy: {:.2f}".format(accuracy0))
history = model.fit(train_dataset,
epochs=initial_epochs,
validation_data=validation_dataset)
# Convert the saved model to TensorFlow Lite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
try:
quantized_tflite_model = converter.convert()
print("Model converted successfully")
except Exception as e:
print("Error converting model: ", e) <--- HERE ERROR
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.ylabel('Accuracy')
plt.ylim([min(plt.ylim()),1])
plt.title('Training and Validation Accuracy')
plt.subplot(2, 1, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.ylabel('Cross Entropy')
plt.ylim([0,1.0])
plt.title('Training and Validation Loss')
plt.xlabel('epoch')
plt.show()
Tried also
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = train_dataset
#The below 3 lines performs the input - output quantization
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
but got Error converting model: 'Functional' object has no attribute '_get_save_spec'
Upvotes: 0
Views: 67