Reputation: 1365
I need some help with a program I'm writing for my Programming II class at universtiy. The question asks that one calculates the Fibonacci sequence using recursion. One must store the calculated Fibonacci numbers in an array to stop unnecessary repeated calculations and to cut down to the calculation time.
I managed to get the program working without the array and memorization, now I'm trying to implement that and I'm stuck. I'm not sure how to structure it. I've Googled and skimmed through some books but haven't found much to help me solve how to implement a solution.
import javax.swing.JOptionPane;
public class question2
{
static int count = 0;
static int [] dictionary;
public static void main(String[] args)
{
int answer;
int num = Integer.parseInt(javax.swing.JOptionPane.showInputDialog("Enter n:"));
javax.swing.JOptionPane.showMessageDialog(null,
"About to calculate fibonacci(" + num + ")");
//giving the array "n" elements
dictionary= new int [num];
if (dictionary.length>=0)
dictionary[0]= 0;
if (dictionary.length>=1)
dictionary[0]= 0;
dictionary[1]= 1;
//method call
answer = fibonacci(num);
//output
JOptionPane.showMessageDialog(null,"Fibonacci("+num+") is "+answer+" (took "+count+" calls)");
}
static int fibonacci(int n)
{
count++;
// Only defined for n >= 0
if (n < 0) {
System.out.println("ERROR: fibonacci sequence not defined for negative numbers.");
System.exit(1);
}
// Base cases: f(0) is 0, f(1) is 1
// Other cases: f(n) = f(n-1) + f(n-2)/
if (n == 0)
{
return dictionary[0];
}
else if (n == 1)
{
return dictionary[1];
}
else
return dictionary[n] = fibonacci(n-1) + fibonacci(n-2);
}
}
The above is incorrect, the end of my fib method is the main problem. I've no idea how to get it to add the numbers recursively to the correctly parts of the array.
Upvotes: 14
Views: 59559
Reputation: 69
using System; using System.Collections.Generic;
namespace Fibonacci { public class FibonacciSeries {
static void Main(string[] args)
{
int n;
Dictionary<int, long> dict = new Dictionary<int, long>();
Console.WriteLine("ENTER NUMBER::");
n = Convert.ToInt32(Console.ReadLine());
for (int j = 0; j <= n; j++)
{
Console.WriteLine(Fib(j, dict));
}
}
public static long Fib(int n, Dictionary<int, long> dict)
{
if (n <= 1)
return n;
if (dict.ContainsKey(n))
return dict[n];
var value = Fib(n - 1,dict) + Fib(n - 2,dict);
dict[n] = value;
return value;
}
}
}
Upvotes: 0
Reputation: 3495
This is a very quick one using memoisation. First I initialise my cache dictionary.
var cache = [Int:Int]()
Then I create my Fibonacci number generator. Since it is a recursive function, every call to the function would theoretically compute the whole Fibonacci sequence again up to the requested number. This is why we use the cache, to speed up the recursive function:
func fibonacci(_ number: Int) -> Int {
// if the value is in the dictionary I just return it
if let value = cache[number] { return value }
// Otherwise I calculate it recursively.
// Every recursion will check the cache again,
// this is why memoisation is faster!
let newValue = number < 2 ? number : fibonacci(number - 1) + fibonacci(number - 2)
cache[number] = newValue
return newValue
}
I can save my sequence in an array like this:
var numbers = Array(0..<10).map(fibonacci) //[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
Or use the function in a loop.
Upvotes: 0
Reputation: 1
public class FiboSeries {
// first two terms of Fibonacci
int x1 = 0;
int x2 = 1;
long xn; // nth number in Fibo series
long[] array; // an array for implementing memoization
// print the Nth number of Fibonacci - logic is f(n) = f(n-1) + f(n-2)
long fibo(int n) {
// initialize the array having n elements if it does not exist already
if (array == null) {
array = new long[n + 1];
}
// Fetch the memoized value from the array instead of recursion
// for instance, fibo(3) will be calculated just once and stored inside this
// array for next call
if (array[n] != 0)
{
xn = array[n];
return xn;
}
// value of fibo(1)
if (n == 1) {
xn = x1;
}
// value of fibo(2)
if (n == 2) {
xn = x2;
}
// value of Fibo(n) using non linear recursion
if (n > 2) {
xn = fibo(n - 1) + fibo(n - 2);
}
// before returning the value - store it at nth position of an array
// However, before saving the value into array, check if the position is already
//full or not
if (array[n] == 0) {
array[n] = xn;
}
return xn;
}
public static void main(String[] args) {
FiboSeries f = new FiboSeries();
int n = 50;
long number = f.fibo(n);
System.out.println(number);
}
}
Upvotes: -1
Reputation: 310
Might be too old but here is my solution for swift
class Recursion {
func fibonacci(_ input: Int) {
var dictioner: [Int: Int] = [:]
dictioner[0] = 0
dictioner[1] = 1
print(fibonacciCal(input, dictioner: &dictioner))
}
func fibonacciCal(_ input: Int, dictioner: inout [Int: Int]) -> Int {
if let va = dictioner[input]{
return va
} else {
let firstPart = fibonacciCal(input-1, dictioner: &dictioner)
let secondPart = fibonacciCal(input-2, dictioner: &dictioner)
if dictioner[input] == nil {
dictioner[input] = firstPart+secondPart
}
return firstPart+secondPart
}
}
}
// 0,1,1,2,3,5,8
class TestRecursion {
func testRecursion () {
let t = Recursion()
t.fibonacci(3)
}
}
Upvotes: -1
Reputation: 3
import java.util.HashMap;
import java.util.Map;
public class FibonacciSequence {
public static int fibonacci(int n, Map<Integer, Integer> memo) {
if (n < 2) {
return n;
}
if (!memo.containsKey(n)) {
memo.put(n, fibonacci(n - 1, memo) + fibonacci(n - 2, memo));
}
return memo.get(n);
}
public static int fibonacci(int n, int[] memo) {
if (n < 2) {
return n;
}
if (memo[n - 1] != 0) {
return memo[n - 1];
}
return memo[n - 1] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo);
}
public static void main(String[] s) {
int n = 10;
System.out.println("f(n) = " + fibonacci(n, new HashMap<Integer, Integer>()));
System.out.println("f(n) = " + fibonacci(n, new int[n]));
}
}
Upvotes: 0
Reputation: 103
Here is my implementation.
private static int F(int N, int[] A) {
if ((N == 0) || (N == 1)) return N;
if (A[N] != 0) return A[N];
if ((A[N - 1] != 0) && (A[N - 2] != 0)) {
A[N] = A[N - 1] + A[N - 2];
return A[N];
}
if (A[N-2] != 0) {
A[N] = A[N - 2] + F(N - 1, A);
return A[N];
}
if (A[N-1] != 0) {
A[N] = A[N - 1] + F(N - 2, A);
return A[N];
}
A[N] = F(N-1, A) + F(N-2, A);
return A[N];
}
Upvotes: -2
Reputation: 23
#include <stdio.h>
long int A[100]={1,1};
long int fib(int n){
if (A[n])
{
return A[n];
}
else
{
return A[n]=fib(n-1)+fib(n-2);
}
}
int main(){
printf("%ld",fib(30));
}
Upvotes: -2
Reputation: 2624
Here is a fully-fledged class that leverages the memoization concept:
import java.util.HashMap;
import java.util.Map;
public class Fibonacci {
public static Fibonacci getInstance() {
return new Fibonacci();
}
public int fib(int n) {
HashMap<Integer, Integer> memoizedMap = new HashMap<>();
memoizedMap.put(0, 0);
memoizedMap.put(1, 1);
return fib(n, memoizedMap);
}
private int fib(int n, Map<Integer, Integer> map) {
if (map.containsKey(n))
return map.get(n);
int fibFromN = fib(n - 1, map) + fib(n - 2, map);
// MEMOIZE the computed value
map.put(n, fibFromN);
return fibFromN;
}
}
Notice that
memoizedMap.put(0, 0);
memoizedMap.put(1, 1);
are used to eliminate the necessity of the following check
if (n == 0) return 0;
if (n == 1) return 1;
at each recursive function call.
Upvotes: 2
Reputation: 129
public static int fib(int n, Map<Integer,Integer> map){
if(n ==0){
return 0;
}
if(n ==1){
return 1;
}
if(map.containsKey(n)){
return map.get(n);
}
Integer fibForN = fib(n-1,map) + fib(n-2,map);
map.put(n, fibForN);
return fibForN;
}
Similar to most solutions above but using a Map instead.
Upvotes: 13
Reputation: 93
Here is my implementation of recursive fibonacci memoization. Using BigInteger and ArrayList allows to calculate 100th or even larger term. I tried 1000th terms, and result is returned in a matter of milliseconds, here is the code:
private static List<BigInteger> dict = new ArrayList<BigInteger>();
public static void printFebonachiRecursion (int num){
if (num==1){
printFebonachiRecursion(num-1);
System.out.printf("Term %d: %d%n",num,1);
dict.add(BigInteger.ONE);
}
else if (num==0){
System.out.printf("Term %d: %d%n",num,0);
dict.add(BigInteger.ZERO);
}
else {
printFebonachiRecursion(num-1);
dict.add(dict.get(num-2).add(dict.get(num-1)));
System.out.printf("Term %d: %d%n",num,dict.get(num));
}
}
Output example
printFebonachiRecursion(100);
Term 0: 0
Term 1: 1
Term 2: 1
Term 3: 2
...
Term 98: 135301852344706746049
Term 99: 218922995834555169026
Term 100: 354224848179261915075
Upvotes: 4
Reputation: 41
This is another way to approach memoization for recursive fibonacci() method using a static array of values -
public static long fibArray[]=new long[50];\\Keep it as large as you need
public static long fibonacci(long n){
long fibValue=0;
if(n==0 ){
return 0;
}else if(n==1){
return 1;
}else if(fibArray[(int)n]!=0){
return fibArray[(int)n];
}
else{
fibValue=fibonacci(n-1)+fibonacci(n-2);
fibArray[(int) n]=fibValue;
return fibValue;
}
}
Note that this method uses a global(class level) static array fibArray[]. To have a look at the whole code with explanation you can also see the following - http://www.javabrahman.com/gen-java-programs/recursive-fibonacci-in-java-with-memoization/
Upvotes: 1
Reputation: 6613
Program to print first n
fibonacci numbers using Memoization.
int[] dictionary;
// Get Fibonacci with Memoization
public int getFibWithMem(int n) {
if (dictionary == null) {
dictionary = new int[n];
}
if (dictionary[n - 1] == 0) {
if (n <= 2) {
dictionary[n - 1] = n - 1;
} else {
dictionary[n - 1] = getFibWithMem(n - 1) + getFibWithMem(n - 2);
}
}
return dictionary[n - 1];
}
public void printFibonacci()
{
for (int curr : dictionary) {
System.out.print("F[" + i++ + "]:" + curr + ", ");
}
}
Upvotes: 6
Reputation: 193
int F(int Num){
int i =0;
int* A = NULL;
if(Num > 0)
{
A = (int*) malloc(Num * sizeof(int));
}
else
return Num;
for(;i<Num;i++)
A[i] = -1;
return F_M(Num, &A);
}
int F_M(int Num, int** Ap){
int Num1 = 0;
int Num2 = 0;
if((*Ap)[Num - 1] < 0)
{
Num1 = F_M(Num - 1, Ap);
(*Ap)[Num -1] = Num1;
printf("Num1:%d\n",Num1);
}
else
Num1 = (*Ap)[Num - 1];
if((*Ap)[Num - 2] < 0)
{
Num2 = F_M(Num - 2, Ap);
(*Ap)[Num -2] = Num2;
printf("Num2:%d\n",Num2);
}
else
Num2 = (*Ap)[Num - 2];
if(0 == Num || 1 == Num)
{
(*Ap)[Num] = Num;
return Num;
}
else{
// return ((*Ap)[Num - 2] > 0?(*Ap)[Num - 2] = F_M(Num -2, Ap): (*Ap)[Num - 2] ) + ((*Ap)[Num - 1] > 0?(*Ap)[Num - 1] = F_M(Num -1, Ap): (*Ap)[Num - 1] );
return (Num1 + Num2);
}
}
int main(int argc, char** argv){
int Num = 0;
if(argc>1){
sscanf(argv[1], "%d", &Num);
}
printf("F(%d) = %d", Num, F(Num));
return 0;
}
Upvotes: 1
Reputation: 308001
You need to distinguish between already calculated number and not calculated numbers in the dictionary, which you currently don't: you always recalculate the numbers.
if (n == 0)
{
// special case because fib(0) is 0
return dictionary[0];
}
else
{
int f = dictionary[n];
if (f == 0) {
// number wasn't calculated yet.
f = fibonacci(n-1) + fibonacci(n-2);
dictionary[n] = f;
}
return f;
}
Upvotes: 25
Reputation: 420951
I believe you forget to actually look up stuff in your dictionary.
Change
else
return dictionary[n] = fibonacci(n-1) + fibonacci(n-2);
to
else {
if (dictionary[n] > 0)
return dictionary[n];
return dictionary[n] = fibonacci(n - 1) + fibonacci(n - 2);
}
and it works just fine (tested it myself :)
Upvotes: 4