Reputation: 1
I am currently training a DCGAN (Deep Convolutional Generative Adversarial Network) for data augmentation, and I've based my implementation on the network proposed in this GitHub repository: https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dcgan/dcgan.py
However, I'm facing issues with the generated images not being well-defined, and I'm not sure how to adjust the network's parameters to improve the quality. Here are the parameters I'm currently using:
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=64, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension") parser.add_argument("--channels", type=int, default=1, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
Issues Observed:
Generated images are not well-defined and lack clarity.
Adjusting the number of epochs and batch size has not significantly improved the image quality.
Questions:
What parameter adjustments can I make to improve the quality of the generated images?
Are there any specific techniques or strategies to enhance the definition of the images?
How should I monitor and interpret the loss functions for both the generator and the discriminator to ensure proper training?
Any help or suggestions would be greatly appreciated!
Thank you!
Upvotes: 0
Views: 37