Reputation: 315
I am struggling with passing context to conversational rag chain when using RunnableWithMessageHistory.
I have the following query function:
def query(query_text, prompt, session_id, metadata_context):
# History retrieval test
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
("system", "{context}"),
("system", prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", PROMPT_TEMPLATE),
("system", "{context}"),
("system", prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
conversational_rag_chain = RunnableWithMessageHistory(
rag_chain,
get_session_history,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
try:
logger.info(f"Model: {LLM_MODEL} assigned. Generation of response has started.")
response = conversational_rag_chain.invoke({"input": query_text, "context": metadata_context}, config={"configurable": {"session_id": f"{session_id}"}},)
logger.info(f"Response generated.")
except Exception as e:
return ({'Generation of response failed: ': str(e)})
return response["answer"]
I want to pass my own 'context' that is prepared and parsed from retriever. I do not want retriever to be called again but from what I've read - retrieving happens by itself if chat_history does not contain the answer.
prompt variable is created:
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=metadata_context, input=query_text)
As you can see I am trying to put the context everywhere but no success.
The 'context' I can see when calling
conversational_rag_chain.invoke({"input": query_text, "context": metadata_context}, config={"configurable": {"session_id": f"{session_id}"}},)
logger.info(f"Response generated.")
is the result of retriever:
Document(metadata={'number_of_reviews': '16', 'price': 18999, 'product_name': 'product', 'rating': '4')
The code I'm using is as follows:
chroma_client = chromadb.HttpClient(host=DB_HOST, port=DB_PORT)
chroma_collection = chroma_client.get_collection(os.getenv("DB_COLLECTION"))
vectorstore = VStoreChroma(DB_COLLECTION, embedding_function, client=client)
llm = ChatOpenAI(model="gpt-4o-mini",temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
search_kwargs = {"k": 10}
)
def self_query(query_text):
model = llm
logger.info("Data retrieval has started.")
try:
result = retriever.invoke(query_text)
logger.info("Data retrieved from database.")
if len(result) == 0:
logger.info(f"Unable to find matching results.")
except Exception as e:
return ({'Retrieval failed: ': str(e)})
return result
Retrieving is alright I get correct results. The problem is that the context I prepare from metadata by parsing it with the function like the one you mention in your snippet. It is string and I do not get it where I can pass it so the context is used properly. The rest is as I mentioned before.
Upvotes: 1
Views: 414
Reputation: 2284
You can pass your context or your question however you decide but i think fundamentally, your context should be separate from question
You can also pass your context easily using this template I have provided
chat_template = """
Answer the following questions{question} \n
Based on the data and context provided {context} \n
Question: {question} \n
"""
# get the chat prompt template
prompt = ChatPromptTemplate.from_template(chat_template)
To something like this below.
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from operator import itemgetter
prompt = ChatPromptTemplate.from_template(chat_template)
# Initialize the LLM
llm = ChatOpenAI(temperature=0.5, max_tokens=4096)
# Initialize the output parser
output_parser = StrOutputParser()
# Create the LLMChain
final_rag = LLMChain(prompt=prompt, llm=llm, output_parser=output_parser)
# Invoke the chain with the input
question = "Your question here" # Replace this with your actual question
response = final_rag.invoke({"input": question, "context": itemgetter(metadata_context)})
print(response)
Upvotes: 0