Yannick Bot
Yannick Bot

Reputation: 11

HTML MathJax not showing the entire square bracket around matrix

First of all, my English is not very good. So sorry if I don't write it correctly!

I have a website where I want to write some mathematical equations, some of them are very big. I have a matrix I want to place on the website which should look like this (picture from Maple 2024): The 24x24 matrix

The matrix is 24x24 and my website represent the square brackets like this (also on the other side): Wrong square bracket

A different matrix with 18x18 also has this problem, but with only 1 row not showing (also on the other side): The 18x18 matrix

I know I am not wrong in writing my matrix, because I have many more matrices on my website which are working (4x4, 6x6, 9x9, 12x12). Here is an example of how I write my matrices on screen (all are in the same format):

<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<span class="math display">\[
 \label{vgl_2_005} [k_{L}] = \cfrac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}
\]</span>

2x2 matrix example on my website

This is how I load my MathJax:

window.MathJax = { tex: { inlineMath: [['$','$']], tags: "ams", autoload: { color: [], colorv2: ['color'] }, packages: { '[+]': ['noerrors'] } }, options: { ignoreHtmlClass: 'bibliotheek_hoofdstuk_ignore', processHtmlClass: 'bibliotheek_hoofdstuk_startup' }, loader: { load: ['[tex]/noerrors'] } };

I don't know why this is happening, I assumed the maximum buffer of 5kB for MathJax was maybe too small, but also higher buffers wasn't helping me. I looks like there is a maximum size of matrices, but I wasn't able to find something about this. Any idea what could go wrong?

Edit:

This is my full 24x24 matrix in code snippet:

<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<span class="math display">\[
 \label{vgl_3_064} [k_{L}] = \begin{bmatrix} \cfrac{37 EA}{10 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{13 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & \cfrac{4539 EI_{yy}}{7 L^{3}} & 0 & 0 & 0 & \cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & -\cfrac{13575 EI_{yy}}{112 L^{3}} & 0 & 0 & 0 & \cfrac{165 EI_{yy}}{14 L^{2}} & 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & \cfrac{12393 EI_{yy}}{56 L^{2}} & 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & \cfrac{729 EI_{yy}}{7 L^{2}} \\ 0 & 0 & \cfrac{4539 EI_{zz}}{7 L^{3}} & 0 & -\cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & 0 & 0 & -\cfrac{13575 EI_{zz}}{112 L^{3}} & 0 & -\cfrac{165 EI_{zz}}{14 L^{2}} & 0 & 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & -\cfrac{12393 EI_{zz}}{56 L^{2}} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & -\cfrac{729 EI_{zz}}{7 L^{2}} & 0 \\ 0 & 0 & 0 & \cfrac{37 G J}{10 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{13 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 \\ 0 & 0 & -\cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & \cfrac{6157 EI_{zz}}{385 L} & 0 & 0 & 0 & \cfrac{165 EI_{zz}}{14 L^{2}} & 0 & \cfrac{6893 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 \\ 0 & \cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & 0 & 0 & \cfrac{6157 EI_{yy}}{385 L} & 0 & -\cfrac{165 EI_{yy}}{14 L^{2}} & 0 & 0 & 0 & \cfrac{6893 EI_{yy}}{6160 L} & 0 & -\cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} & 0 & -\cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} \\ -\cfrac{13 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{37 EA}{10 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\cfrac{13575 EI_{yy}}{112 L^{3}} & 0 & 0 & 0 & -\cfrac{165 EI_{yy}}{14 L^{2}} & 0 & \cfrac{4539 EI_{yy}}{7 L^{3}} & 0 & 0 & 0 & -\cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & -\cfrac{729 EI_{yy}}{7 L^{2}} & 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & -\cfrac{12393 EI_{yy}}{56 L^{2}} \\ 0 & 0 & -\cfrac{13575 EI_{zz}}{112 L^{3}} & 0 & \cfrac{165 EI_{zz}}{14 L^{2}} & 0 & 0 & 0 & \cfrac{4539 EI_{zz}}{7 L^{3}} & 0 & \cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & \cfrac{729 EI_{zz}}{7 L^{2}} & 0 & 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & \cfrac{12393 EI_{zz}}{56 L^{2}} & 0 \\ 0 & 0 & 0 & -\cfrac{13 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{37 G J}{10 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 \\ 0 & 0 & -\cfrac{165 EI_{zz}}{14 L^{2}} & 0 & \cfrac{6893 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & \cfrac{6157 EI_{zz}}{385 L} & 0 & 0 & 0 & -\cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 \\ 0 & \cfrac{165 EI_{yy}}{14 L^{2}} & 0 & 0 & 0 & \cfrac{6893 EI_{yy}}{6160 L} & 0 & -\cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & 0 & 0 & \cfrac{6157 EI_{yy}}{385 L} & 0 & \cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} & 0 & \cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} \\ -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 EA}{5 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 EA}{40 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & -\cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & \cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & \cfrac{177147 EI_{yy}}{154 L^{3}} & 0 & 0 & 0 & \cfrac{6561 EI_{yy}}{44 L^{2}} & 0 & -\cfrac{767637 EI_{yy}}{1232 L^{3}} & 0 & 0 & 0 & \cfrac{164025 EI_{yy}}{616 L^{2}} \\ 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & \cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & -\cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & 0 & 0 & \cfrac{177147 EI_{zz}}{154 L^{3}} & 0 & -\cfrac{6561 EI_{zz}}{44 L^{2}} & 0 & 0 & 0 & -\cfrac{767637 EI_{zz}}{1232 L^{3}} & 0 & -\cfrac{164025 EI_{zz}}{616 L^{2}} & 0 \\ 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 G J}{5 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 G J}{40 L} & 0 & 0 \\ 0 & 0 & -\cfrac{12393 EI_{zz}}{56 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{729 EI_{zz}}{7 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 & 0 & 0 & -\cfrac{6561 EI_{zz}}{44 L^{2}} & 0 & \cfrac{45198 EI_{zz}}{385 L} & 0 & 0 & 0 & \cfrac{164025 EI_{zz}}{616 L^{2}} & 0 & \cfrac{490617 EI_{zz}}{6160 L} & 0 \\ 0 & \cfrac{12393 EI_{yy}}{56 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} & 0 & -\cfrac{729 EI_{yy}}{7 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} & 0 & \cfrac{6561 EI_{yy}}{44 L^{2}} & 0 & 0 & 0 & \cfrac{45198 EI_{yy}}{385 L} & 0 & -\cfrac{164025 EI_{yy}}{616 L^{2}} & 0 & 0 & 0 & \cfrac{490617 EI_{yy}}{6160 L} \\ \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 EA}{5 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & -\cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & \cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & -\cfrac{767637 EI_{yy}}{1232 L^{3}} & 0 & 0 & 0 & -\cfrac{164025 EI_{yy}}{616 L^{2}} & 0 & \cfrac{177147 EI_{yy}}{154 L^{3}} & 0 & 0 & 0 & -\cfrac{6561 EI_{yy}}{44 L^{2}} \\ 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & \cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & -\cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & 0 & 0 & -\cfrac{767637 EI_{zz}}{1232 L^{3}} & 0 & \cfrac{164025 EI_{zz}}{616 L^{2}} & 0 & 0 & 0 & \cfrac{177147 EI_{zz}}{154 L^{3}} & 0 & \cfrac{6561 EI_{zz}}{44 L^{2}} & 0 \\ 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 G J}{5 L} & 0 & 0 \\ 0 & 0 & -\cfrac{729 EI_{zz}}{7 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 & 0 & 0 & \cfrac{12393 EI_{zz}}{56 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 & 0 & 0 & -\cfrac{164025 EI_{zz}}{616 L^{2}} & 0 & \cfrac{490617 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{6561 EI_{zz}}{44 L^{2}} & 0 & \cfrac{45198 EI_{zz}}{385 L} & 0 \\ 0 & \cfrac{729 EI_{yy}}{7 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} & 0 & -\cfrac{12393 EI_{yy}}{56 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} & 0 & \cfrac{164025 EI_{yy}}{616 L^{2}} & 0 & 0 & 0 & \cfrac{490617 EI_{yy}}{6160 L} & 0 & -\cfrac{6561 EI_{yy}}{44 L^{2}} & 0 & 0 & 0 & \cfrac{45198 EI_{yy}}{385 L} \end{bmatrix}
\]</span>

Upvotes: 1

Views: 111

Answers (1)

Heiko Thei&#223;en
Heiko Thei&#223;en

Reputation: 16892

The CSS styles used by the HTML MathJax renderer are not prepared for such huge delimiters. More specifically, the vertical bar character that is used for the middle part of the square bracket is scaled only 500-fold, which is not enough for your formula.

You can override the CSS rule to scale it 5000-fold, as shown in the snippet below.

mjx-stretchy-v > mjx-ext > mjx-c {
  transform: scaleY(5000) translateY(.075em) !important;
}
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js" type="text/javascript"></script>
<span class="math display">\[
 \label{vgl_3_064} [k_{L}] = \begin{bmatrix} \cfrac{37 EA}{10 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{13 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & \cfrac{4539 EI_{yy}}{7 L^{3}} & 0 & 0 & 0 & \cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & -\cfrac{13575 EI_{yy}}{112 L^{3}} & 0 & 0 & 0 & \cfrac{165 EI_{yy}}{14 L^{2}} & 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & \cfrac{12393 EI_{yy}}{56 L^{2}} & 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & \cfrac{729 EI_{yy}}{7 L^{2}} \\ 0 & 0 & \cfrac{4539 EI_{zz}}{7 L^{3}} & 0 & -\cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & 0 & 0 & -\cfrac{13575 EI_{zz}}{112 L^{3}} & 0 & -\cfrac{165 EI_{zz}}{14 L^{2}} & 0 & 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & -\cfrac{12393 EI_{zz}}{56 L^{2}} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & -\cfrac{729 EI_{zz}}{7 L^{2}} & 0 \\ 0 & 0 & 0 & \cfrac{37 G J}{10 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{13 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 \\ 0 & 0 & -\cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & \cfrac{6157 EI_{zz}}{385 L} & 0 & 0 & 0 & \cfrac{165 EI_{zz}}{14 L^{2}} & 0 & \cfrac{6893 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 \\ 0 & \cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & 0 & 0 & \cfrac{6157 EI_{yy}}{385 L} & 0 & -\cfrac{165 EI_{yy}}{14 L^{2}} & 0 & 0 & 0 & \cfrac{6893 EI_{yy}}{6160 L} & 0 & -\cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} & 0 & -\cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} \\ -\cfrac{13 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{37 EA}{10 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\cfrac{13575 EI_{yy}}{112 L^{3}} & 0 & 0 & 0 & -\cfrac{165 EI_{yy}}{14 L^{2}} & 0 & \cfrac{4539 EI_{yy}}{7 L^{3}} & 0 & 0 & 0 & -\cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & -\cfrac{729 EI_{yy}}{7 L^{2}} & 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & -\cfrac{12393 EI_{yy}}{56 L^{2}} \\ 0 & 0 & -\cfrac{13575 EI_{zz}}{112 L^{3}} & 0 & \cfrac{165 EI_{zz}}{14 L^{2}} & 0 & 0 & 0 & \cfrac{4539 EI_{zz}}{7 L^{3}} & 0 & \cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & \cfrac{729 EI_{zz}}{7 L^{2}} & 0 & 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & \cfrac{12393 EI_{zz}}{56 L^{2}} & 0 \\ 0 & 0 & 0 & -\cfrac{13 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{37 G J}{10 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 \\ 0 & 0 & -\cfrac{165 EI_{zz}}{14 L^{2}} & 0 & \cfrac{6893 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{2517 EI_{zz}}{28 L^{2}} & 0 & \cfrac{6157 EI_{zz}}{385 L} & 0 & 0 & 0 & -\cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 \\ 0 & \cfrac{165 EI_{yy}}{14 L^{2}} & 0 & 0 & 0 & \cfrac{6893 EI_{yy}}{6160 L} & 0 & -\cfrac{2517 EI_{yy}}{28 L^{2}} & 0 & 0 & 0 & \cfrac{6157 EI_{yy}}{385 L} & 0 & \cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} & 0 & \cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} \\ -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 EA}{5 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 EA}{40 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & -\cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & \cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & \cfrac{177147 EI_{yy}}{154 L^{3}} & 0 & 0 & 0 & \cfrac{6561 EI_{yy}}{44 L^{2}} & 0 & -\cfrac{767637 EI_{yy}}{1232 L^{3}} & 0 & 0 & 0 & \cfrac{164025 EI_{yy}}{616 L^{2}} \\ 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & \cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & -\cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & 0 & 0 & \cfrac{177147 EI_{zz}}{154 L^{3}} & 0 & -\cfrac{6561 EI_{zz}}{44 L^{2}} & 0 & 0 & 0 & -\cfrac{767637 EI_{zz}}{1232 L^{3}} & 0 & -\cfrac{164025 EI_{zz}}{616 L^{2}} & 0 \\ 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 G J}{5 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 G J}{40 L} & 0 & 0 \\ 0 & 0 & -\cfrac{12393 EI_{zz}}{56 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{729 EI_{zz}}{7 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 & 0 & 0 & -\cfrac{6561 EI_{zz}}{44 L^{2}} & 0 & \cfrac{45198 EI_{zz}}{385 L} & 0 & 0 & 0 & \cfrac{164025 EI_{zz}}{616 L^{2}} & 0 & \cfrac{490617 EI_{zz}}{6160 L} & 0 \\ 0 & \cfrac{12393 EI_{yy}}{56 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} & 0 & -\cfrac{729 EI_{yy}}{7 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} & 0 & \cfrac{6561 EI_{yy}}{44 L^{2}} & 0 & 0 & 0 & \cfrac{45198 EI_{yy}}{385 L} & 0 & -\cfrac{164025 EI_{yy}}{616 L^{2}} & 0 & 0 & 0 & \cfrac{490617 EI_{yy}}{6160 L} \\ \cfrac{27 EA}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 EA}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 EA}{5 L} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\cfrac{10935 EI_{yy}}{28 L^{3}} & 0 & 0 & 0 & -\cfrac{6561 EI_{yy}}{154 L^{2}} & 0 & -\cfrac{2187 EI_{yy}}{16 L^{3}} & 0 & 0 & 0 & \cfrac{10935 EI_{yy}}{308 L^{2}} & 0 & -\cfrac{767637 EI_{yy}}{1232 L^{3}} & 0 & 0 & 0 & -\cfrac{164025 EI_{yy}}{616 L^{2}} & 0 & \cfrac{177147 EI_{yy}}{154 L^{3}} & 0 & 0 & 0 & -\cfrac{6561 EI_{yy}}{44 L^{2}} \\ 0 & 0 & -\cfrac{10935 EI_{zz}}{28 L^{3}} & 0 & \cfrac{6561 EI_{zz}}{154 L^{2}} & 0 & 0 & 0 & -\cfrac{2187 EI_{zz}}{16 L^{3}} & 0 & -\cfrac{10935 EI_{zz}}{308 L^{2}} & 0 & 0 & 0 & -\cfrac{767637 EI_{zz}}{1232 L^{3}} & 0 & \cfrac{164025 EI_{zz}}{616 L^{2}} & 0 & 0 & 0 & \cfrac{177147 EI_{zz}}{154 L^{3}} & 0 & \cfrac{6561 EI_{zz}}{44 L^{2}} & 0 \\ 0 & 0 & 0 & \cfrac{27 G J}{20 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{189 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & -\cfrac{297 G J}{40 L} & 0 & 0 & 0 & 0 & 0 & \cfrac{54 G J}{5 L} & 0 & 0 \\ 0 & 0 & -\cfrac{729 EI_{zz}}{7 L^{2}} & 0 & \cfrac{4131 EI_{zz}}{385 L} & 0 & 0 & 0 & \cfrac{12393 EI_{zz}}{56 L^{2}} & 0 & \cfrac{148959 EI_{zz}}{6160 L} & 0 & 0 & 0 & -\cfrac{164025 EI_{zz}}{616 L^{2}} & 0 & \cfrac{490617 EI_{zz}}{6160 L} & 0 & 0 & 0 & \cfrac{6561 EI_{zz}}{44 L^{2}} & 0 & \cfrac{45198 EI_{zz}}{385 L} & 0 \\ 0 & \cfrac{729 EI_{yy}}{7 L^{2}} & 0 & 0 & 0 & \cfrac{4131 EI_{yy}}{385 L} & 0 & -\cfrac{12393 EI_{yy}}{56 L^{2}} & 0 & 0 & 0 & \cfrac{148959 EI_{yy}}{6160 L} & 0 & \cfrac{164025 EI_{yy}}{616 L^{2}} & 0 & 0 & 0 & \cfrac{490617 EI_{yy}}{6160 L} & 0 & -\cfrac{6561 EI_{yy}}{44 L^{2}} & 0 & 0 & 0 & \cfrac{45198 EI_{yy}}{385 L} \end{bmatrix}
\]</span>

If your formula contains horizontally stretched delimiters, you can also override

mjx-stretchy-h > mjx-ext > mjx-c::before: {
  transform: scaleX(5000) !important;
}

Upvotes: 0

Related Questions