Reputation: 11
I am using this srgan script to try to generate super resolution satellite images. A few things I modified are input images, shapes and saving images. Anyone understands why the images generated looks like: this.
Also, why are the rgb pixels each assigned a value of 1 and the other colors getting zero point something? The range of the input datasets is between 0 and 0.6 for all images.
loading low resolution images:
s2_image = []
def load_s2_images(s2):
for file in os.listdir(s2):
if file.endswith('.TIF'):
file_path = os.path.join(s2, file)
dataset = gdal.Open(file_path, gdalconst.GA_ReadOnly)
red = dataset.GetRasterBand(4).ReadAsArray()
green = dataset.GetRasterBand(3).ReadAsArray()
blue = dataset.GetRasterBand(2).ReadAsArray()
# coastal = dataset.GetRasterBand(1).ReadAsArray()
# nir = dataset.GetRasterBand(8).ReadAsArray()
# redEg = dataset.GetRasterBand(5).ReadAsArray()
s2_nparray = np.stack((red, green, blue), axis=-1)#, coastal, nir, redEg), axis=-1)
s2_image.append(s2_nparray)
return s2_image
s2_image_arrays = load_s2_images(s2)
def save_generated_images(epoch, generator_model, s2_test, output_dir):
generated_sr_images = generator_model.predict(s2_test)
for ni, image in enumerate(generated_sr_images):
plt.imsave(f"{output_dir}/epoch_{epoch}_image_{i}.png", image)
I split all images into 32*32, and I was expecting that when I load them into arcgis, they are next to each other instead of overlaying on top of each other. If it helps, I tested both on the pretained imagenet model and the VGG from scratch.
Upvotes: 0
Views: 47