MPA
MPA

Reputation: 1117

Efficiently generate user history with negative sampling for recommendation system using Polars API

I’m working on a recommendation system, and I need to efficiently generate user history with negative sampling using the Polars API. I have two datasets:

  1. User-Article Interactions: • This dataset contains the user_id and the article_id of articles that the user has read. Example:
import polars as pl
    
df_user_articles = pl.DataFrame({
    'user_id': [1, 1, 2, 2, 2, 3, 4, 4, 4, 4],
    'article_id': [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
})

This dataset contains all article_id and their corresponding text data.

df_articles = pl.DataFrame({
    'article_id': list(range(100, 200)),  # example article IDs
    'text': ['text'] * 100
})

For each user_id, I want to:

  1. Create a history of articles they’ve read, with a length between 5 and 20.
  2. Generate candidates for each user by selecting some articles they’ve read (positive samples) and some they haven’t (negative samples). The candidates should be labeled:
    • -1 for articles the user has read.
    • -0 for articles the user hasn’t read.

Output format:

I want the output as a DataFrame with the following columns:

user_id user_history candidates
1 ['101', '102'] ['101-1', '102-1', '103-0']
2 ['103', '104', '105'] ['103-1', '104-1', '105-1', '106-0']

How can I efficiently achieve this using the Polars API, avoiding apply and ensuring that the solution scales well with large datasets?

To optimize for efficiency, we don’t need to check if the article IDs have been read by the user during candidate generation.

I have a solution but it not keep the category type of "article_id"

matrix_size = users_df.shape[0]

num_candidates = 5

index_matrix = np.random.randint(0, articles_df.shape[0], size=(matrix_size, num_candidates))

index_matrix
users_df.with_columns(
    candidates=articles_df['article_id'].to_numpy()[:,np.newaxis][index_matrix].reshape(matrix_size, num_candidates)
    )

Upvotes: 2

Views: 78

Answers (1)

roman
roman

Reputation: 117540

Maybe not the most simple way to do it, but if you need random amount of negative candidates, you can do something like this:

def sample(x):
    user_history = x["user_history"]
    r = x["literal"]
    return (
        df_articles
        .filter(~pl.col.article_id.is_in(user_history))
        .sample(r)
        .select(pl.col.article_id.cast(pl.String) + "-0")
        .to_series()
    )

df = (
    df_user_articles
    .group_by("user_id")
    .agg(
        user_history = "article_id",
        candidates = pl.col("article_id").cast(pl.String) + "-1"
    )
)

candidates_num = 2

df.with_columns(
    pl.concat_list(
        pl.col.candidates,
        pl.struct([
            np.random.randint(1, candidates_num, df.height),
            pl.col.user_history
        ])
        .map_elements(sample, return_dtype = pl.List(pl.String))
    ).alias("candidates")
)
┌─────────┬───────────────────┬───────────────────────────────┐
│ user_id ┆ user_history      ┆ candidates                    │
│ ---     ┆ ---               ┆ ---                           │
│ i64     ┆ list[i64]         ┆ list[str]                     │
╞═════════╪═══════════════════╪═══════════════════════════════╡
│ 1       ┆ [101, 102]        ┆ ["101-1", "102-1", … "164-0"] │
│ 4       ┆ [107, 108, … 110] ┆ ["107-1", "108-1", … "115-0"] │
│ 3       ┆ [106]             ┆ ["106-1", "193-0", "152-0"]   │
│ 2       ┆ [103, 104, 105]   ┆ ["103-1", "104-1", … "164-0"] │
└─────────┴───────────────────┴───────────────────────────────┘

There's another solution which avoids map_elements, but it might be also not really performant cause it requires to cross join list of users and list of articles.

df_user_history = (
    df_user_articles
    .group_by("user_id")
    .agg(user_history = pl.col.article_id)
)

num_candidates = 5

df = (
    df_user_history
    .join(df_articles, how="cross")
    .group_by("user_id")
    .agg(
        candidates = pl.col.article_id.sample(num_candidates).unique()
    ).with_columns(
        pl.col.candidates.list.head(
            pl.int_range(1, num_candidates).shuffle().sample(pl.len(), with_replacement=True)
        )
    )
)

(
    df_user_history
    .join(df, on="user_id")
    .with_columns(
        pl.col.candidates.list.set_difference(pl.col.user_history)
    )
    .with_columns(
        candidates = pl.concat([
            pl.col.user_history.list.explode().cast(pl.String) + "-0",
            pl.col.candidates.list.explode().cast(pl.String) + "-1"
        ]).implode().over("user_id")
    )
)

Upvotes: 2

Related Questions