Reputation: 21
I had a static hard-coded test code. After that I have transformed it into dynamic binding to test the performance, and virtual calls appeared to be approximately two times slower.
#include <vector>
class vUnit {
public:
virtual ~vUnit() {;}
virtual float process(float f) = 0;
};
class vRack {
public:
vRack() {;}
~vRack() {;}
inline void addUnit(vUnit* unit_ptr) {
_units.push_back(unit_ptr);
}
inline float process_all(float f) {
float res = 0.;
for (int j = 0 ; j< 60; j++) {
for (auto u : _units) {
f = u->process(f);
}
}
res += f;
return res;
}
private:
std::vector<vUnit*> _units ;
int _i = 0;
};
class vMultiplyF : public vUnit {
public:
vMultiplyF(float v) {_f = v;}
inline float process(float f) final {
return f * _f;
}
private:
float _f;
};
class vDivideF : public vUnit {
public:
vDivideF(float v) {_f = v;}
inline float process(float f) final {
if (f > 0) {
return _f / f;
} else return 0.0f;
}
private:
float _f;
};
int main () {
float f = 1.5f, r = 0.0f;
vRack vR;
vMultiplyF vM(5.1f);
vDivideF vD(5.5f);
vR.addUnit(&vM);
vR.addUnit(&vD);
for( int i = 0 ; i < 1000 ; i++) {
f = vR.process_all(f);
r += f;
}
return 0;
}
I think that CRTP could be a reasonable compromise, but I don't quite get how I can rewrite vRack.addUnit()
so that it could take different vUnit implementations. Can anyone help?
Upvotes: 1
Views: 154
Reputation: 63152
I think that CRTP could be a reasonable compromise.
CRTP doesn't help you here. You need some indirection to distinguish your different operations.
If the configuration is static, then you can swap from iterating a container of vUnit
s to using a fold expression to combine a tuple of specific objects.
#include <tuple>
template <typename T>
concept Unit = requires(T unit, float f) { f = unit.process(f); };
class vMultiplyF { // No base class needed
public:
vMultiplyF(float v) {_f = v;}
float process(float f) {
return f * _f;
}
private:
float _f;
};
class vDivideF { // No base class needed
public:
vDivideF(float v) {_f = v;}
float process(float f) {
if (f > 0) {
return _f / f;
} else return 0.0f;
}
private:
float _f;
};
template <Unit... Units>
class vRack {
public:
vRack(Units... units) : _units(std::move(units)...) {}
float process_all(float f) {
for (int j = 0 ; j< 60; j++) {
// evaluates (f = unit.process(f)) for each unit in sequence
std::apply([&](Units&... unit){ ((f = unit.process(f)), ...); }, _units);
}
return f;
}
private:
std::tuple<Units...> _units;
};
int main () {
float f = 1.5f, r = 0.0f;
vMultiplyF vM(5.1f);
vDivideF vD(5.5f);
vRack vR(vM, vD); // deduces vRack<vMultiplyF, vDivideF>
for( int i = 0 ; i < 1000 ; i++) {
f = vR.process_all(f);
r += f;
}
return 0;
}
Upvotes: 5