Reputation: 21
I have a set of points, their scattered image resemblances to a Gaussian normal distribution. Searching the internet there are many Python sample how to fit a curve to the points. They based on:
def Gauss1(X, C, mu, sigma):
return C * np.exp(-(X-mu) ** 2 / (2 * sigma ** 2))
and
from scipy.optimize import curve_fit
This produce a very well fit curve. The problem is that Gauss1 is not the Gaussian normal distribution, it should be:
def Gauss2(X, mu, sigma):
return (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-(X-mu) ** 2 / (2 * sigma ** 2))
Using Gauss2 produces the next message and there is no popt:
OptimizeWarning: Covariance of the parameters could not be estimated
Is any way to generate the fitting curve using the real Gaussian distribution?
popt2, pcov2 = curve_fit(Gauss2, x, y)
OptimizeWarning: Covariance of the parameters could not be estimated
I think the points are not needed, but I can publish 25 lines.
import matplotlib.pyplot as plt # Follow the convention
import numpy as np # Library for working with arrays
from scipy.optimize import curve_fit
######################################## G L O B A L S
# X the ratings after grouping by 23 the chess players from FIDE 2024 Oct Standard
# Y is the average of players in the averaged ratings
XY = (
(1411, 231), (1434, 271), (1457, 281), (1480, 287),
(1503, 292), (1526, 298), (1549, 293), (1572, 299),
(1595, 300), (1618, 303), (1641, 304), (1664, 308),
(1687, 301), (1710, 311), (1733, 304), (1756, 291),
(1779, 286), (1802, 283), (1825, 279), (1848, 268),
(1871, 260), (1894, 243), (1917, 229), (1940, 221),
(1963, 203), (1986, 169), (2009, 134), (2032, 112),
(2055, 102), (2078, 94), (2101, 81), (2124, 76),
(2147, 70), (2170, 61), (2193, 54), (2216, 45),
(2239, 42), (2262, 35), (2285, 31), (2308, 27),
(2331, 26), (2354, 22), (2377, 20), (2400, 18),
(2423, 15), (2446, 10), (2469, 10), (2492, 7),
(2515, 6), (2538, 5), (2561, 4), (2584, 3),
(2607, 3), (2630, 2), (2653, 2), (2676, 2),
(2699, 1), (2722, 2), (2745, 1), (2768, 1),
(2791, 1), (2837, 1))
class c: # Constants
X_LABEL_STEP = 50
Y_LABEL_STEP = 10
A4 = (11.69, 8.27) # W x H in inches
###################################### F U N C T I O N S
def Graph_Gauss():
global c, XY
X = [] ; Y = []
for e in XY:
X += [e[0]]
Y += [e[1]]
# Set up the limits for X, ratings
minX = min(X) ; maxX = max(X)
# Set up the limits for Y, number of players with that rating
minY = min(Y) ; maxY = max(Y)
fig, ax = plt.subplots()
fig.set_size_inches(c.A4)
fig.suptitle("Rating Distribution", fontsize=18, y=0.935)
x1 = [] # Make the x axle
xlb = [] # Make the labels for x
stp = c.X_LABEL_STEP
for k in range(stp*(minX//stp), stp*(maxX//stp + 2), stp):
x1 += [k]
xlb.append(f"{k}")
ax.set_xticks(ticks=x1, labels=xlb, rotation=270)
ax.set_xlabel("Rating", fontsize=15, labelpad=7)
stp = c.Y_LABEL_STEP
yticks = np.arange(stp*(minY//stp), stp*(maxY//stp + 2), stp)
ax.set_ylabel("Number of Players", fontsize=15, rotation=270, labelpad=18)
ax.set_yticks(ticks=yticks)
ax.grid(which="major", axis="both")
ax.scatter(X, Y, color="#000FFF", marker='o', s=14)
# plt.show()
# Fit a normal distribution, aka Gaussian fitting curve
# https://www.wasyresearch.com/tutorial-python-for-fitting-gaussian-distribution-on-data/
# mu = mean = sum(x) / len(x) ; In our case sum(x * y) / sum(y)
# sigma = standard deviation = sqrt((sum((x - mean)**2) / len(x))
#
# https://www.scribbr.com/statistics/normal-distribution/
# 1/(sigma*sqrt(2*pi)) * e**(-(x - mean)**2 / (2 * sigma**2))
# Calculating the Gaussian PDF values given Gaussian parameters and random variable X
def Gauss1(X, C, mu, sigma):
return C * np.exp(-(X-mu)**2 / (2 * sigma**2))
def Gauss2(X, mu, sigma):
return (1/(sigma*np.sqrt(2*np.pi))) * np.exp(-(X-mu)**2 / (2 * sigma**2))
x = np.array(X)
y = np.array(Y)
mu = sum(x * y) / sum(y)
sigma = np.sqrt(sum(y*(x - mu)**2)/sum(y))
print(f"{1/(sigma*np.sqrt(2*np.pi))=:.2f} {mu=:.2f} {sigma=:.2f}")
popt1, pcov1 = curve_fit(Gauss1, x, y, p0=[max(y), mu, sigma], maxfev=5000)
popt2, pcov2 = curve_fit(Gauss2, x, y) # This generates:
# OptimizeWarning: Covariance of the parameters could not be estimated
yg1 = Gauss1(x, *popt1)
yg2 = Gauss2(x, *popt2)
ax.plot(x, yg1, color="#FF0F00", linewidth=3,
label=f"Normal: mu={popt1[1]:.2f}, sigma={popt1[2]:.2f}")
plt.legend(fontsize=12)
breakpoint() # ???? DEBUG
plt.show()
pass # To set a breakpoint
#######################################################################
if __name__ == '__main__':
# breakpoint() # ???? DEBUG, to set other breakpoints
Graph_Gauss()
Added on Oct. 28, 2024 Hi Aldehyde and Lastchance, Thank you very much for your answers, it is getting clearer. Now I have two questions: • What is exactly the Gaussian distribution function, where is the sigma; I couldn’t figure out from the many internet search hits. • For using the Gauss2() you normalized the y values by 230,000 and this produced a well-fitting curve. I tried a few other numbers, 240,000 even gives a better fit. Where this or a similar number comes from. I tried np.sum(y)=8,241 and the area below the dots np.sum((x[1:]-x[:-1]) * ((y[1:]+y[:-1])/2)) = 186,898, they gave a bad fit. So what is the right method, how can 240,000 or something similar number be deducted from the given 62 points. If you can recommend a text or some other book, where I can find the answer, it is also fine. Thanks, again, Vilmos
Upvotes: 2
Views: 112
Reputation: 6640
You have two major errors.
The data that you provide are BINNED FREQUENCIES, not PROBABILITY DENSITIES. However, the function Gauss2 that you are trying to fit is a probability density function (whose integral is 1).
You haven't provided all the data, so it's quite difficult to convert from a binned frequency to a probability density because you don't know the total number of people! (I've estimated it below.)
The connection between a binned frequency and a pdf is
binned frequency = number x pdf x dx
where number
is the total number of people and dx
is the bin width. Thus, you can fit your Gauss2 function to Y/(number*dx)
rather than Y
itself. When you come to plot it then you have to reverse that to get the frequencies.
I have had to estimate number=10000
(by assuming that it's about "twice the number after the maximum") because you didn't provide all the data; you can correct this in the code below from your full database.
Change your lines
popt1, pcov1 = curve_fit(Gauss1, x, y, p0=[max(y), mu, sigma], maxfev=5000)
popt2, pcov2 = curve_fit(Gauss2, x, y)
yg1 = Gauss1(x, *popt1)
yg2 = Gauss2(x, *popt2)
ax.plot(x, yg1, color="#FF0F00", linewidth=3,
label=f"Normal: mu={popt1[1]:.2f}, sigma={popt1[2]:.2f}")
to the following (correcting number
from the entire dataset):
popt1, pcov1 = curve_fit(Gauss1, x, y, p0=[max(y), mu, sigma], maxfev=5000)
yg1 = Gauss1(x, *popt1)
number = 10000 # this has been estimated: you didn't provide all of the data
dx = 23 # bin width
popt2, pcov2 = curve_fit(Gauss2, x, y/(number*dx), p0=[mu, sigma] )
yg2 = Gauss2(x, *popt2) * number * dx
ax.plot(x, yg1, color="#FF0000", linewidth=3,
label=f"Normal: mu={popt1[1]:.2f}, sigma={popt1[2]:.2f}")
ax.plot(x, yg2, color="#00FF00", linewidth=3,
label=f"Normal: mu={popt2[0]:.2f}, sigma={popt2[1]:.2f}")
Upvotes: 1