Reputation: 1
ValueError: Only instances of `keras.Layer` can be added to a Sequential model.
Received: <tensorflow_hub.keras_layer.KerasLayer object at 0x7c61f819f590>
(of type <class 'tensorflow_hub.keras_layer.KerasLayer'>)
code:
import kagglehub
# Download latest version
path = kagglehub.model_download("google/mobilenet-v2/tensorFlow2/tf2-preview-feature-vector")
mobile_net = hub.KerasLayer("https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4",
input_shape=(224, 224, 3), # Change as per your input size
trainable=False) # Freeze weights if you don't want to fine-tune
# Define the Sequential model
model = tf.keras.models.Sequential([
mobile_net, # Use the pre-trained model as the first layer
tf.keras.layers.Dense(1, activation='sigmoid') # Final layer for binary classification
])
i want to solve the problem but i cant and i need help.
Upvotes: -2
Views: 283
Reputation: 31
The code is working fine in tensorflow==2.15
and tensorflow_hub==0.16.1
. So, the error could be due to compatibility issues arising from the integration of Keras 3.0 in TensorFlow 2.17. Consider using tf-keras
(Keras 2.0) may resolve the issue or using a Lambda layer to wrap hub.KerasLayer
(mobile_net) ensures compatibility and allows you to build the model using tf.keras.models.Sequential
.
Using lambda layer to wrap the hub layer
import tensorflow as tf
import tensorflow_hub as hub
import kagglehub
path = kagglehub.model_download("google/mobilenet-v2/tensorFlow2/tf2-preview-feature-vector")
mobile_net = hub.KerasLayer(
"https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4")
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(224, 224, 3)),
tf.keras.layers.Lambda(lambda x: mobile_net(x)),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
output:
Model: "sequential_5"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ lambda_2 (Lambda) │ (None, 1280) │ 0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_5 (Dense) │ (None, 1) │ 1,281 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
Total params: 1,281 (5.00 KB)
Trainable params: 1,281 (5.00 KB)
Non-trainable params: 0 (0.00 B)
Kindly refer to to this gist, and documentation for more details.
Upvotes: 1