Reputation: 327
I am experimenting using single or multiple GPUs for LLM fine-tuning by changing the CUDA_VISIBLE_DEVICES variable in the following cmd:
CUDA_VISIBLE_DEVICES=0,1 accelerate launch --multi_gpu finetuning_with_lora_HfArgumentParser.py \
--model_name "/root/123/local_model" \
--train_json_path "./train.json" \
--val_json_path "./val.json" \
--max_source_length 128 \
--max_target_length 256 \
--lora_rank 8 \
--lora_alpha 32 \
--output_dir "output" \
--logging_dir "logs" \
--num_train_epochs 10 \
--per_device_train_batch_size 1 \
--learning_rate 1e-4 \
--gradient_accumulation_steps 1024
However, I observed that total training time does not change regardless of CUDA_VISIBLE_DEVICES=0 or CUDA_VISIBLE_DEVICES=0,1. Does anyone know what's wrong with it?
Here is the training code:
import torch
from dataclasses import dataclass, field
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, TrainingArguments
from peft import LoraConfig, get_peft_model, TaskType
from qa_dataset import QADataset
from tqdm import tqdm
import time, sys
@dataclass
class CustomTrainingArguments:
model_name: str = field(
default="Qwen/Qwen2-1.5B-Instruct",
metadata={"help": "Pre-trained model for finetuning"}
)
train_json_path: str = field(
default="./train.json",
metadata={"help": "Path of training json data"}
)
val_json_path: str = field(
default="./val.json",
metadata={"help": "Path of validation json data"}
)
max_source_length: int = field(
default=128,
metadata={"help": "Maximum length of the input"}
)
max_target_length: int = field(
default=256,
metadata={"help": "Maximum length of the output"}
)
lora_rank: int = field(
default=8,
metadata={"help": "Inner dimension of the low-rank matrices to train"}
)
lora_alpha: int = field(
default=32,
metadata={"help": "Scaling factor for the low-rank matrices contribution"}
)
def train_model(model, train_loader, val_loader, optimizer, gradient_accumulation_steps,
device, num_epochs, model_output_dir, writer):
batch_step = 0
for epoch in range(int(num_epochs)):
time1 = time.time()
model.train()
for index, data in enumerate(tqdm(train_loader, file=sys.stdout, desc="Train Epoch: " + str(epoch))):
input_ids = data['input_ids'].to(device, dtype=torch.long)
attention_mask = data['attention_mask'].to(device, dtype=torch.long)
labels = data['labels'].to(device, dtype=torch.long)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
)
loss = outputs.loss
loss.backward()
if (index % gradient_accumulation_steps == 0 and index != 0) or index == len(train_loader) - 1:
optimizer.step()
optimizer.zero_grad()
writer.add_scalar('Loss/train', loss, batch_step)
batch_step += 1
if index % 100 == 0 or index == len(train_loader) - 1:
time2 = time.time()
tqdm.write(
f"{index}, epoch: {epoch} -loss: {str(loss)} ; each step's time spent: {(str(float(time2 - time1) / float(index + 0.0001)))}")
model.eval()
val_loss = validate_model(model, val_loader, device)
writer.add_scalar('Loss/val', val_loss, epoch)
print(f"val loss: {val_loss} , epoch: {epoch}")
print("Save Model To ", model_output_dir)
model.save_pretrained(model_output_dir)
def validate_model(model, val_loader, device):
running_loss = 0.0
with torch.no_grad():
for _, data in enumerate(tqdm(val_loader, file=sys.stdout, desc="Validation Data")):
input_ids = data['input_ids'].to(device, dtype=torch.long)
attention_mask = data['attention_mask'].to(device, dtype=torch.long)
labels = data['labels'].to(device, dtype=torch.long)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
)
loss = outputs.loss
running_loss += loss.item()
return running_loss / len(val_loader)
def main():
parser = HfArgumentParser((TrainingArguments, CustomTrainingArguments))
training_args, custom_args = parser.parse_args_into_dataclasses()
# model_name = "Qwen/Qwen2-1.5B-Instruct"
model_name = custom_args.model_name
# train_json_path = "./train.json"
train_json_path = custom_args.train_json_path
# val_json_path = "./val.json"
val_json_path = custom_args.val_json_path
# max_source_length = 128
max_source_length = custom_args.max_source_length
# max_target_length = 256
max_target_length = custom_args.max_target_length
# epochs = 10
epochs = training_args.num_train_epochs
# batch_size = 1
batch_size = training_args.per_device_train_batch_size
# lr = 1e-4
lr = training_args.learning_rate
# gradient_accumulation_steps = 16
gradient_accumulation_steps = training_args.gradient_accumulation_steps
# lora_rank = 8
lora_rank = custom_args.lora_rank
# lora_alpha = 32
lora_alpha = custom_args.lora_alpha
# model_output_dir = "output"
model_output_dir = training_args.output_dir
# logs_dir = "logs"
logs_dir = training_args.logging_dir
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = "cuda:{}".format(training_args.local_rank)
print('------------------------')
print(training_args.local_rank)
print(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# setup peft
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=False,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
model.is_parallelizable = True
model.model_parallel = True
model.print_trainable_parameters()
print("Start Load Train Data...")
train_params = {
"batch_size": batch_size,
"shuffle": True,
"num_workers": 0,
}
training_set = QADataset(train_json_path, tokenizer, max_source_length, max_target_length)
training_loader = DataLoader(training_set, **train_params)
print("Start Load Validation Data...")
val_params = {
"batch_size": batch_size,
"shuffle": False,
"num_workers": 0,
}
val_set = QADataset(val_json_path, tokenizer, max_source_length, max_target_length)
val_loader = DataLoader(val_set, **val_params)
writer = SummaryWriter(logs_dir)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
model = model.to(device)
print("Start Training...")
train_model(
model=model,
train_loader=training_loader,
val_loader=val_loader,
optimizer=optimizer,
gradient_accumulation_steps=gradient_accumulation_steps,
device=device,
num_epochs=epochs,
model_output_dir=model_output_dir,
writer=writer
)
writer.close()
if __name__ == '__main__':
main()
Upvotes: 0
Views: 36