Reputation: 37579
Im trying to show a square polygon with the 100% of the width of the screen, then, i supose that i must zoom it (with Z axis) until the polygon borders are tounching the screen borders.
I'm trying to achieve this using gluProject to project a coordinate in 3D into a 2D screen coordinate. If the screen coordinate is either 0 or matches the width or height, then it is touching a screen border.
The problem is that something is going wrong, the outputCoords array returned with gluProject is giving me fake values, then i'm doing something wrong. For example, if i put a Z value of -1,15, i can see how my polygon haves exactly the same width of the screen... but the outputCootrds array is telling me these rare values: 175,16,0.9 !!! 175,16!!! it is wrong, because the polygon haves exactly the same width of the screen and it is starting on the 0 pixel of the screen :S
If someone can help me explaining the correct way to achieve this with code examples, please i really need help with this. I readed thousands of tutorials and stackoverflow questions about transforming vertices into pixel coordinates, but all those tutorials, guides and questions doesn't help me to achieve this with my code.
This is myGlSurfaceView class, the code to calcule the screen pixel coordinates is on the method onDrawFrame
.
public class MySurfaceView extends GLSurfaceView implements Renderer {
private Context context;
private Square square;
private float xrot; //X Rotation
private float yrot; //Y Rotation
private float zrot; //Z Rotation
private float xspeed; //X Rotation Speed
private float yspeed; //Y Rotation Speed
private float z = -1.15f; //Profundidad en el eje Z
private float oldX; //valor anterior de X, para rotación
private float oldY; //valor anterior de Y, para rotación
private final float TOUCH_SCALE = 0.2f; //necesario para la rotación
//create the matrix grabber object in your initialization code
private MatrixGrabber mg = new MatrixGrabber();
private boolean firstTimeDone=false; //true si la aplicación ya ha sido inicializada.
public MySurfaceView(Context context, Bitmap image) {
super(context);
this.context = context;
setEGLConfigChooser(8, 8, 8, 8, 16, 0); //fondo transparente
getHolder().setFormat(PixelFormat.TRANSLUCENT); //fondo transparente
//Transformamos esta clase en renderizadora
this.setRenderer(this);
//Request focus, para que los botones reaccionen
this.requestFocus();
this.setFocusableInTouchMode(true);
square = new Square(image);
}
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glDisable(GL10.GL_DITHER); //dithering OFF
gl.glEnable(GL10.GL_TEXTURE_2D); //Texture Mapping ON
gl.glShadeModel(GL10.GL_SMOOTH); //Smooth Shading
gl.glClearDepthf(1.0f); //Depth Buffer Setup
gl.glEnable(GL10.GL_DEPTH_TEST); //Depth Testing ON
gl.glDepthFunc(GL10.GL_LEQUAL);
gl.glClearColor(0,0,0,0); //fondo transparente
gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST);
//Cargamos la textura del cubo.
square.loadGLTexture(gl, this.context);
}
public void onDrawFrame(GL10 gl) {
//Limpiamos pantalla y Depth Buffer
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
gl.glLoadIdentity();
//Dibujado
gl.glTranslatef(0.0f, 0.0f, z); //Move z units into the screen
gl.glScalef(0.8f, 0.8f, 0.8f); //Escalamos para que quepa en la pantalla
//Rotamos sobre los ejes.
gl.glRotatef(xrot, 1.0f, 0.0f, 0.0f); //X
gl.glRotatef(yrot, 0.0f, 1.0f, 0.0f); //Y
gl.glRotatef(zrot, 0.0f, 0.0f, 1.0f); //Z
//Dibujamos el cuadrado
square.draw(gl);
//Factores de rotación.
xrot += xspeed;
yrot += yspeed;
if (!firstTimeDone)
{
/////////////// NEW CODE FOR SCALING THE AR IMAGE TO THE DESIRED WIDTH /////////////////
mg.getCurrentProjection(gl);
mg.getCurrentModelView(gl);
float [] modelMatrix = new float[16];
float [] projMatrix = new float[16];
modelMatrix=mg.mModelView;
projMatrix=mg.mProjection;
int [] mView = new int[4];
mView[0] = 0;
mView[1] = 0;
mView[2] = 800; //width
mView[3] = 480; //height
float [] outputCoords = new float[3];
GLU.gluProject(-1.0f, -1.0f, z, modelMatrix, 0, projMatrix, 0, mView, 0, outputCoords, 0);
int i=0;
System.out.print(i);
// firstTimeDone=true;
}
}
//si el surface cambia, resetea la vista, imagino que esto pasa cuando cambias de modo portrait/landscape o sacas el teclado físico en móviles tipo Droid.
public void onSurfaceChanged(GL10 gl, int width, int height) {
if(height == 0) {
height = 1;
}
gl.glViewport(0, 0, width, height); //Reset Viewport
gl.glMatrixMode(GL10.GL_PROJECTION); //Select Projection Matrix
gl.glLoadIdentity(); //Reset Projection Matrix
//Aspect Ratio de la ventana
GLU.gluPerspective(gl, 45.0f, (float)width / (float)height, 0.1f, 100.0f);
gl.glMatrixMode(GL10.GL_MODELVIEW); //Select Modelview Matrix
gl.glLoadIdentity(); //Reset Modelview Matrix
}
public boolean onTouchEvent(MotionEvent event) {
float x = event.getX();
float y = event.getY();
switch (event.getAction())
{
case MotionEvent.ACTION_MOVE:
//Calculamos el cambio
float dx = x - oldX;
float dy = y - oldY;
xrot += dy * TOUCH_SCALE;
yrot += dx * TOUCH_SCALE;
//Log.w("XXXXXX", "ACTION_MOVE_NO_ZOOM");
break;
}
oldX = x;
oldY = y;
return true; //El evento ha sido manejado
}
public void zoomIn(){
z=z+0.2f;
if (z>-1.0f)
z=-1.0f;
}
public void zoomOut(){
z=z-0.2f;
if (z<-20.0f)
z=-20.0f;
}
public void rotateL(){
zrot=zrot+3.0f;
}
public void rotateR(){
zrot=zrot-3.0f;
}
public void reset()
{
xrot=0;
yrot=0;
zrot=0;
xspeed=0;
yspeed=0;
z = -5.0f;
}
}
This is my square class:
public class Square {
//Buffer de vertices
private FloatBuffer vertexBuffer;
//Buffer de coordenadas de texturas
private FloatBuffer textureBuffer;
//Puntero de texturas
private int[] textures = new int[3];
//El item a representar
private Bitmap image;
//Definición de vertices
private float vertices[] =
{
-1.0f, -1.0f, 0.0f, //Bottom Left
1.0f, -1.0f, 0.0f, //Bottom Right
-1.0f, 1.0f, 0.0f, //Top Left
1.0f, 1.0f, 0.0f //Top Right
};
/*
private float vertices[] =
{
-0.8f, -0.8f, 0.0f, //Bottom Left
0.8f, -0.8f, 0.0f, //Bottom Right
-0.8f, 0.8f, 0.0f, //Top Left
0.8f, 0.8f, 0.0f
};
*/
//Coordenadas (u, v) de las texturas
/*
private float texture[] =
{
//Mapping coordinates for the vertices
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 0.0f,
1.0f, 1.0f
};
*/
private float texture[] =
{
//Mapping coordinates for the vertices
0.0f, 1.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f
};
//Inicializamos los buffers
public Square(Bitmap image) {
ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4);
byteBuf.order(ByteOrder.nativeOrder());
vertexBuffer = byteBuf.asFloatBuffer();
vertexBuffer.put(vertices);
vertexBuffer.position(0);
byteBuf = ByteBuffer.allocateDirect(texture.length * 4);
byteBuf.order(ByteOrder.nativeOrder());
textureBuffer = byteBuf.asFloatBuffer();
textureBuffer.put(texture);
textureBuffer.position(0);
this.image=image;
}
//Funcion de dibujado
public void draw(GL10 gl) {
gl.glFrontFace(GL10.GL_CCW);
//gl.glEnable(GL10.GL_BLEND);
//Bind our only previously generated texture in this case
gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
//Point to our vertex buffer
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer);
//Enable vertex buffer
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
//Draw the vertices as triangle strip
gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, vertices.length / 3);
//Disable the client state before leaving
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
//gl.glDisable(GL10.GL_BLEND);
}
//Carga de texturas
public void loadGLTexture(GL10 gl, Context context) {
//Generamos un puntero de texturas
gl.glGenTextures(1, textures, 0);
//y se lo asignamos a nuestro array
gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
//Creamos filtros de texturas
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);
//Diferentes parametros de textura posibles GL10.GL_CLAMP_TO_EDGE
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_REPEAT);
gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_REPEAT);
/*
String imagePath = "radiocd5.png";
AssetManager mngr = context.getAssets();
InputStream is=null;
try {
is = mngr.open(imagePath);
} catch (IOException e1) { e1.printStackTrace(); }
*/
//Get the texture from the Android resource directory
InputStream is=null;
/*
if (item.equals("rim"))
is = context.getResources().openRawResource(R.drawable.rueda);
else if (item.equals("selector"))
is = context.getResources().openRawResource(R.drawable.selector);
*/
/*
is = context.getResources().openRawResource(resourceId);
Bitmap bitmap = null;
try {
bitmap = BitmapFactory.decodeStream(is);
} finally {
try {
is.close();
is = null;
} catch (IOException e) {
}
}
*/
Bitmap bitmap =image;
//con el siguiente código redimensionamos las imágenes que sean mas grandes de 256x256.
int newW=bitmap.getWidth();
int newH=bitmap.getHeight();
float fact;
if (newH>256 || newW>256)
{
if (newH>256)
{
fact=(float)255/(float)newH; //porcentaje por el que multiplicar para ser tamaño 256
newH=(int)(newH*fact); //altura reducida al porcentaje necesario
newW=(int)(newW*fact); //anchura reducida al porcentaje necesario
}
if (newW>256)
{
fact=(float)255/(float)newW; //porcentaje por el que multiplicar para ser tamaño 256
newH=(int)(newH*fact); //altura reducida al porcentaje necesario
newW=(int)(newW*fact); //anchura reducida al porcentaje necesario
}
bitmap=Bitmap.createScaledBitmap(bitmap, newW, newH, true);
}
//con el siguiente código transformamos imágenes no potencia de 2 en imágenes potencia de 2 (pot)
//meto el bitmap NOPOT en un bitmap POT para que no aparezcan texturas blancas.
int nextPot=256;
int h = bitmap.getHeight();
int w = bitmap.getWidth();
int offx=(nextPot-w)/2; //distancia respecto a la izquierda, para que la imagen quede centrada en la nueva imagen POT
int offy=(nextPot-h)/2; //distancia respecto a arriba, para que la imagen quede centrada en la nueva imagen POT
Bitmap bitmap2 = Bitmap.createBitmap(nextPot, nextPot, Bitmap.Config.ARGB_8888); //crea un bitmap transparente gracias al ARGB_8888
Canvas comboImage = new Canvas(bitmap2);
comboImage.drawBitmap(bitmap, offx, offy, null);
comboImage.save();
//Usamos Android GLUtils para espcificar una textura de 2 dimensiones para nuestro bitmap
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap2, 0);
//Checkeamos si el GL context es versión 1.1 y generamos los Mipmaps por Flag. Si no, llamamos a nuestra propia implementación
if(gl instanceof GL11) {
gl.glTexParameterf(GL11.GL_TEXTURE_2D, GL11.GL_GENERATE_MIPMAP, GL11.GL_TRUE);
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap2, 0);
} else {
buildMipmap(gl, bitmap2);
}
//Limpiamos los bitmaps
bitmap.recycle();
bitmap2.recycle();
}
//Nuestra implementación de MipMap. Escalamos el bitmap original hacia abajo por factor de 2 y lo asignamos como nuevo nivel de mipmap
private void buildMipmap(GL10 gl, Bitmap bitmap) {
int level = 0;
int height = bitmap.getHeight();
int width = bitmap.getWidth();
while(height >= 1 || width >= 1) {
GLUtils.texImage2D(GL10.GL_TEXTURE_2D, level, bitmap, 0);
if(height == 1 || width == 1) {
break;
}
level++;
height /= 2;
width /= 2;
Bitmap bitmap2 = Bitmap.createScaledBitmap(bitmap, width, height, true);
bitmap.recycle();
bitmap = bitmap2;
}
}
}
Upvotes: 0
Views: 2204
Reputation: 45948
If I see correctly, the z-value you put into gluProject
is the same value you put into glTranslate
. But you still draw the polygon using the vertex (-1, -1, 0)
, the z translation comes from the glTranslate
call (which in turn modifies the modelview matrix). But this matrix is also used in gluProject
, so what actually happens is that you translate by z two times (not exactly, as the first translation is further distorted by the rotation). So put in the same vertex you also draw the polygon with, which would be (-1, -1, 0)
and not (-1, -1, z)
.
Keep in mind that gluProject does the same thing as OpenGL's transformation pipeline (like explained in my answer to your other nearly exact same question), so you have to feed it with the same values you feed the OpenGL pipeline with (your polygon's vertices) if you want the same results (the polygon covering the screen).
Upvotes: 1