Reputation: 716
Iam a beginner in image mining. I would like to know the minimum dimension required for effective classification of textured images. As what i feel if a image is too small feature extraction step will not extract enough features. And if the image size goes beyond a certain dimension the processing time will increase exponentially with image size.
Upvotes: 0
Views: 111
Reputation: 784
This is a complex question that requires a bit of thinking.
Short answer: It depends.
Long answer: It depends on the type of texture you want to classify and the type of feature your classification is based on. If the feature extracted is, say, color only, you can use "texture" as small as 1x1 pixel (in that case, using the word "texture" is a bit of an abuse). If you want to classify, say for example characters, you can usually extract a lot of local information from edges (Hough transform, Gabor filters, etc). The image plane just have to be big enough to hold the characters (say 16x16 pixels for Latin alphabet).
If you want to be able to classify any kind of images in any kind of number, you can also base your classification on global information, like entropy, correlogram, energy, inertia, cluster shade, cluster prominence, color and correlation. Those features are used for content based image retrieval.
From the top of my head, I would try using texture as small as 32x32 pixels if the kind of texture you are using is a priori unknown. If on the contrary the kind of texture is a priori known, I would choose one or more feature that I know would classify the images according to my needs (1x1 pixel for color-only, 16x16 pixels for characters, etc). Again, it really depends on what you are trying to achieve. There isn't a unique answer to your question.
Upvotes: 1