Reputation: 8584
I'm having trouble doing simple functions on a data frame and am unsure whether it's the data type of the column, or bad data in the data frame.
I exported a SQL query into a CSV file, then loaded it into a data frame, then attached it.
df <-read.csv("~/Desktop/orders.csv")
Attach(df)
When I am done, and run str(df)
, here is what I get:
$ AccountID: Factor w/ 18093 levels "(819947 row(s) affected)",..: 10 97 167 207 207 299 299 309 352 573 ...
$ OrderID : int 1874197767 1874197860 1874196789 1874206918 1874209100 1874207018 1874209111 1874233050 1874196791 1875081598 ...
$ OrderDate : Factor w/ 280 levels "","2010-09-24",..: 2 2 2 2 2 2 2 2 2 2 ...
$ NumofProducts : int 16 6 4 6 10 4 2 4 6 40 ...
$ OrderTotal : num 20.3 13.8 12.5 13.8 16.4 ...
$ SpecialOrder : int 1 1 1 1 1 1 1 1 1 1 ...
Trying to run the following functions, here is what I get:
> length(OrderID)
[1] 0
> min(OrderTotal)
[1] NA
> min(OrderTotal, na.rm=TRUE)
[1] 5.00
> mean(NumofProducts)
[1] NA
> mean(NumofProducts, na.rm=TRUE)
[1] 3.462902
I have two questions related to this data frame:
Upvotes: 0
Views: 263
Reputation: 94172
The difference between num and int is pretty irrelevant at this stage.
See help(is.na) for starters on NA handling. Do things like:
sum(is.na(foo))
to see how many foo's are NA values. Then things like:
df[is.na(df$foo),]
to see the rows of df where foo is NA.
Upvotes: 2