Reputation: 949
I am designing a program to print all permutations of a given N such that the each digit should be greater than the next digit.
For Example if N=3: output should be 123,456,789,134,145,178,189 etc...
Initial Design:
Generate all possible permutations
Pass the generated permutation to a digit extraction function which checks for the condition
Print out the result
This is a very naive algorithm. But I do not know the implementation/initial design because of the dynamic size of N.
Upvotes: 1
Views: 2591
Reputation: 33545
Since N will always be less than 10, i've used recursion
Call the function as f(3,0,0)
public static void f(int N,int digit,int num)
{
if(N > 0 )
{
for(int d = digit + 1; d < 11 - N; d++) // earlier d < 10, see comments
{
f(N-1,d,num * 10 + d);
}
}else {
System.out.println(num); //add it to a list or whatever
}
}
Output:
123
124
...
678
679
689
789
Upvotes: 4
Reputation: 48398
Just generate them in lexicographic order:
123
124
125
...
134
135
...
145
...
234
235
...
245
...
345
This assumes you have digits at most 5. For larger bound B
, just keep going. Some simple code to do this is:
nextW = w;
for (int i=n-1; i>=0; --i) {
// THE LARGEST THE iTH DIGIT CAN BE IS B-(n-i-1)
// OTHERWISE YOU CANNOT KEEP INCREASING AFTERWARDS
// WITHOUT USING A NUMBER LARGER THAN B
if w[i]<B-(n-i-1) {
// INCREMENT THE RIGHTMOST POSITION YOU CAN
nextW[i] = w[i]+1;
// MAKE THE SEQUENCE FROM THERE INCREASE BY 1
for (int j=i+1; j<N; ++j) {
nextW[j] = w[i]+j-i+1;
}
// VOILA
return nextW;
}
}
return NULL;
Start with w = [1,2,3,...,N];
(easy to make with a for
loop), print w
, call the function above with w
as an input, print that, and continue. With N = 3
and B = 5
, the answer will be the above list (without the ... lines).
If there is no bound B
, then you're SOL because there are infinitely many.
In general, you are computing the N
th elementary symmetric function e_N
.
Upvotes: 1
Reputation: 234795
The most straightforward way to do this is with recursion. Suppose you've generated the first n digits and the last digit generated is i. You have N - n digits left to generate and they must start with i + 1 or higher. Since the last digit can be no more than 9, the next digit can be no more than 10 - (N - n). This gives the basic rule for recursion. Something like this (in Java) should work:
void generate(int N) {
int[] generated = new int[N];
generate(generated, 0);
}
void generate(int[] generated, int nGenerated) {
if (nGenerated == generated.length) {
// print the generated digits
for (int g : generated) {
System.out.print(g);
}
System.out.println();
return;
}
int max = 10 - (generated.length - nGenerated);
int min = nGenerated == 0 ? 1 : (generated[nGenerated - 1] + 1);
for (int i = min; i <= max; ++i) {
generated[nGenerated] = i;
generate(generated, nGenerated + 1);
}
}
Upvotes: 2