Reputation: 353
I would like to display a set of xy-data in Matplotlib in such a way as to indicate a particular path. Ideally, the linestyle would be modified to use an arrow-like patch. I have created a mock-up, shown below (using Omnigraphsketcher). It seems like I should be able to override one of the common linestyle
declarations ('-'
, '--'
, ':'
, etc) to this effect.
Note that I do NOT want to simply connect each datapoint with a single arrow---the actually data points are not uniformly spaced and I need consistent arrow spacing.
Upvotes: 24
Views: 21872
Reputation: 4990
If you can live without the fancy going-around-the-edge / fixed-length arrows, here's a poor man's version sub-diving the segments in approx. ds
long segments. If ds
is not too large, the variance is negligible in my eyes.
from matplotlib import pyplot as plt
import numpy as np
np.random.seed(42)
x, y = 10*np.random.rand(2,8)
# length of line segment
ds=1
# number of line segments per interval
Ns = np.round(np.sqrt( (x[1:]-x[:-1])**2 + (y[1:]-y[:-1])**2 ) / ds).astype(int)
# sub-divide intervals w.r.t. Ns
subdiv = lambda x, Ns=Ns: np.concatenate([ np.linspace(x[ii], x[ii+1], Ns[ii]) for ii, _ in enumerate(x[:-1]) ])
x, y = subdiv(x), subdiv(y)
plt.quiver(x[:-1], y[:-1], x[1:]-x[:-1], y[1:]-y[:-1], scale_units='xy', angles='xy', scale=1, width=.004, headlength=4, headwidth=4)
Upvotes: 0
Reputation: 1018
Here is a modified and streamlined version of Duarte's code. I had problems when I ran his code with various data sets and aspect ratios, so I cleaned it up and used FancyArrowPatches for the arrows. Note the example plot has a scale 1,000,000 times different in x than y.
I also changed to drawing the arrow in display coordinates so the different scaling on the x and y axes would not change the arrow lengths.
Along the way I found a bug in matplotlib's FancyArrowPatch that bombs when plotting a purely vertical arrow. I found a work-around that is in my code.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
def arrowplot(axes, x, y, nArrs=30, mutateSize=10, color='gray', markerStyle='o'):
'''arrowplot : plots arrows along a path on a set of axes
axes : the axes the path will be plotted on
x : list of x coordinates of points defining path
y : list of y coordinates of points defining path
nArrs : Number of arrows that will be drawn along the path
mutateSize : Size parameter for arrows
color : color of the edge and face of the arrow head
markerStyle : Symbol
Bugs: If a path is straight vertical, the matplotlab FanceArrowPatch bombs out.
My kludge is to test for a vertical path, and perturb the second x value
by 0.1 pixel. The original x & y arrays are not changed
MHuster 2016, based on code by
'''
# recast the data into numpy arrays
x = np.array(x, dtype='f')
y = np.array(y, dtype='f')
nPts = len(x)
# Plot the points first to set up the display coordinates
axes.plot(x,y, markerStyle, ms=5, color=color)
# get inverse coord transform
inv = axes.transData.inverted()
# transform x & y into display coordinates
# Variable with a 'D' at the end are in display coordinates
xyDisp = np.array(axes.transData.transform(list(zip(x,y))))
xD = xyDisp[:,0]
yD = xyDisp[:,1]
# drD is the distance spanned between pairs of points
# in display coordinates
dxD = xD[1:] - xD[:-1]
dyD = yD[1:] - yD[:-1]
drD = np.sqrt(dxD**2 + dyD**2)
# Compensating for matplotlib bug
dxD[np.where(dxD==0.0)] = 0.1
# rtotS is the total path length
rtotD = np.sum(drD)
# based on nArrs, set the nominal arrow spacing
arrSpaceD = rtotD / nArrs
# Loop over the path segments
iSeg = 0
while iSeg < nPts - 1:
# Figure out how many arrows in this segment.
# Plot at least one.
nArrSeg = max(1, int(drD[iSeg] / arrSpaceD + 0.5))
xArr = (dxD[iSeg]) / nArrSeg # x size of each arrow
segSlope = dyD[iSeg] / dxD[iSeg]
# Get display coordinates of first arrow in segment
xBeg = xD[iSeg]
xEnd = xBeg + xArr
yBeg = yD[iSeg]
yEnd = yBeg + segSlope * xArr
# Now loop over the arrows in this segment
for iArr in range(nArrSeg):
# Transform the oints back to data coordinates
xyData = inv.transform(((xBeg, yBeg),(xEnd,yEnd)))
# Use a patch to draw the arrow
# I draw the arrows with an alpha of 0.5
p = patches.FancyArrowPatch(
xyData[0], xyData[1],
arrowstyle='simple',
mutation_scale=mutateSize,
color=color, alpha=0.5)
axes.add_patch(p)
# Increment to the next arrow
xBeg = xEnd
xEnd += xArr
yBeg = yEnd
yEnd += segSlope * xArr
# Increment segment number
iSeg += 1
if __name__ == '__main__':
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
# my random data
xScale = 1e6
np.random.seed(1)
x = np.random.random(10) * xScale
y = np.random.random(10)
arrowplot(ax, x, y, nArrs=4*(len(x)-1), mutateSize=10, color='red')
xRng = max(x) - min(x)
ax.set_xlim(min(x) - 0.05*xRng, max(x) + 0.05*xRng)
yRng = max(y) - min(y)
ax.set_ylim(min(y) - 0.05*yRng, max(y) + 0.05*yRng)
plt.show()
Upvotes: 3
Reputation: 175
Vectorized version of Yann's answer:
import numpy as np
import matplotlib.pyplot as plt
def distance(data):
return np.sum((data[1:] - data[:-1]) ** 2, axis=1) ** .5
def draw_path(path):
HEAD_WIDTH = 2
HEAD_LEN = 3
fig = plt.figure()
axes = fig.add_subplot(111)
x = path[:,0]
y = path[:,1]
axes.plot(x, y)
theta = np.arctan2(y[1:] - y[:-1], x[1:] - x[:-1])
dist = distance(path) - HEAD_LEN
x = x[:-1]
y = y[:-1]
ax = x + dist * np.sin(theta)
ay = y + dist * np.cos(theta)
for x1, y1, x2, y2 in zip(x,y,ax-x,ay-y):
axes.arrow(x1, y1, x2, y2, head_width=HEAD_WIDTH, head_length=HEAD_LEN)
plt.show()
Upvotes: 3
Reputation: 28093
Very nice answer by Yann, but by using arrow the resulting arrows can be affected by the axes aspect ratio and limits. I have made a version that uses axes.annotate() instead of axes.arrow(). I include it here for others to use.
In short this is used to plot arrows along your lines in matplotlib. The code is shown below. It can still be improved by adding the possibility of having different arrowheads. Here I only included control for the width and length of the arrowhead.
import numpy as np
import matplotlib.pyplot as plt
def arrowplot(axes, x, y, narrs=30, dspace=0.5, direc='pos', \
hl=0.3, hw=6, c='black'):
''' narrs : Number of arrows that will be drawn along the curve
dspace : Shift the position of the arrows along the curve.
Should be between 0. and 1.
direc : can be 'pos' or 'neg' to select direction of the arrows
hl : length of the arrow head
hw : width of the arrow head
c : color of the edge and face of the arrow head
'''
# r is the distance spanned between pairs of points
r = [0]
for i in range(1,len(x)):
dx = x[i]-x[i-1]
dy = y[i]-y[i-1]
r.append(np.sqrt(dx*dx+dy*dy))
r = np.array(r)
# rtot is a cumulative sum of r, it's used to save time
rtot = []
for i in range(len(r)):
rtot.append(r[0:i].sum())
rtot.append(r.sum())
# based on narrs set the arrow spacing
aspace = r.sum() / narrs
if direc is 'neg':
dspace = -1.*abs(dspace)
else:
dspace = abs(dspace)
arrowData = [] # will hold tuples of x,y,theta for each arrow
arrowPos = aspace*(dspace) # current point on walk along data
# could set arrowPos to 0 if you want
# an arrow at the beginning of the curve
ndrawn = 0
rcount = 1
while arrowPos < r.sum() and ndrawn < narrs:
x1,x2 = x[rcount-1],x[rcount]
y1,y2 = y[rcount-1],y[rcount]
da = arrowPos-rtot[rcount]
theta = np.arctan2((x2-x1),(y2-y1))
ax = np.sin(theta)*da+x1
ay = np.cos(theta)*da+y1
arrowData.append((ax,ay,theta))
ndrawn += 1
arrowPos+=aspace
while arrowPos > rtot[rcount+1]:
rcount+=1
if arrowPos > rtot[-1]:
break
# could be done in above block if you want
for ax,ay,theta in arrowData:
# use aspace as a guide for size and length of things
# scaling factors were chosen by experimenting a bit
dx0 = np.sin(theta)*hl/2. + ax
dy0 = np.cos(theta)*hl/2. + ay
dx1 = -1.*np.sin(theta)*hl/2. + ax
dy1 = -1.*np.cos(theta)*hl/2. + ay
if direc is 'neg' :
ax0 = dx0
ay0 = dy0
ax1 = dx1
ay1 = dy1
else:
ax0 = dx1
ay0 = dy1
ax1 = dx0
ay1 = dy0
axes.annotate('', xy=(ax0, ay0), xycoords='data',
xytext=(ax1, ay1), textcoords='data',
arrowprops=dict( headwidth=hw, frac=1., ec=c, fc=c))
axes.plot(x,y, color = c)
axes.set_xlim(x.min()*.9,x.max()*1.1)
axes.set_ylim(y.min()*.9,y.max()*1.1)
if __name__ == '__main__':
fig = plt.figure()
axes = fig.add_subplot(111)
# my random data
scale = 10
np.random.seed(101)
x = np.random.random(10)*scale
y = np.random.random(10)*scale
arrowplot(axes, x, y )
plt.show()
The resulting figure can be seen here:
Upvotes: 8
Reputation: 35503
Here's a starting off point:
Walk along your line at fixed steps (aspace
in my example below) .
A. This involves taking steps along the line segments created by two sets of points (x1
,y1
) and (x2
,y2
).
B. If your step is longer than the line segment, shift to the next set of points.
At that point determine the angle of the line.
Draw an arrow with an inclination corresponding to the angle.
I wrote a little script to demonstrate this:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
axes = fig.add_subplot(111)
# my random data
scale = 10
np.random.seed(101)
x = np.random.random(10)*scale
y = np.random.random(10)*scale
# spacing of arrows
aspace = .1 # good value for scale of 1
aspace *= scale
# r is the distance spanned between pairs of points
r = [0]
for i in range(1,len(x)):
dx = x[i]-x[i-1]
dy = y[i]-y[i-1]
r.append(np.sqrt(dx*dx+dy*dy))
r = np.array(r)
# rtot is a cumulative sum of r, it's used to save time
rtot = []
for i in range(len(r)):
rtot.append(r[0:i].sum())
rtot.append(r.sum())
arrowData = [] # will hold tuples of x,y,theta for each arrow
arrowPos = 0 # current point on walk along data
rcount = 1
while arrowPos < r.sum():
x1,x2 = x[rcount-1],x[rcount]
y1,y2 = y[rcount-1],y[rcount]
da = arrowPos-rtot[rcount]
theta = np.arctan2((x2-x1),(y2-y1))
ax = np.sin(theta)*da+x1
ay = np.cos(theta)*da+y1
arrowData.append((ax,ay,theta))
arrowPos+=aspace
while arrowPos > rtot[rcount+1]:
rcount+=1
if arrowPos > rtot[-1]:
break
# could be done in above block if you want
for ax,ay,theta in arrowData:
# use aspace as a guide for size and length of things
# scaling factors were chosen by experimenting a bit
axes.arrow(ax,ay,
np.sin(theta)*aspace/10,np.cos(theta)*aspace/10,
head_width=aspace/8)
axes.plot(x,y)
axes.set_xlim(x.min()*.9,x.max()*1.1)
axes.set_ylim(y.min()*.9,y.max()*1.1)
plt.show()
This example results in this figure:
There's plenty of room for improvement here, for starters:
While looking into this, I discovered the quiver plotting method. It might be able to replace the above work, but it wasn't immediately obvious that this was guaranteed.
Upvotes: 10