Reputation: 91
I'm currently implementing the stereovision with OpenCV. Now I'm using the Stereo_Calib sample to remove the distortion en rectify the image. Removing the distortion works fine.
But when I apply rectification, the image is very warped.
This is the code to rectify the images. The parameters rmap are calculated in the same way as in the Stereo_calib example (see here)
void StereoCalibration::StereoRectify(Mat &imageLeft, Mat &imageRight)
{
Mat imLeft, imRight;
remap(imageLeft, imLeft,DistLeft.rmap[0], DistLeft.rmap[1], CV_INTER_CUBIC);
remap(imageRight,imRight, DistRight.rmap[0], DistRight.rmap[1], CV_INTER_CUBIC);
imageLeft = imLeft;
imageRight = imRight;
}
Upvotes: 5
Views: 3229
Reputation: 63
For anyone looking for help on this, I was dealing with very large scale resolution images and was getting very low reprojection error rate with good calibration images. I was getting very warped stereo pairs after rectification and a really bad depth map.
One thing to try is if your images are warped you might need to down-sample them.
Another thing to try is to combine the flags in stereoCalibrate
instead of just choosing one.
Something like this worked for me :
cv2.stereoCalibrate(
object_points, image_points_left,image_points_right,
camera_matrix_left,dist_left,
camera_matrix_right, dist_right,
(5472,3648),None,None,None,None,
cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST + cv2.CALIB_USE_INTRINSIC_GUESS + cv2.CALIB_SAME_FOCAL_LENGTH + cv2.CALIB_RATIONAL_MODEL,criteria
)
Upvotes: 1
Reputation: 95
I started working on opencv stereo image calibration and rectification recently and I was getting similar images. Although it is true to make sure the board is straight and it is true that we need to take multiple images on the corners and in the middle of the camera at different x,y,z and skew positions, what did the trick for me was the flags in stereoCalibrate. I used all the flags specified in the opencv docs except for INTRINSIC_GUESS and it started very nice undistorted and rectified images.
Upvotes: 0
Reputation: 17
I realise this question is a few years old however, I have recently had a similar issue. Building on morynicz answer about "bad chessboard" patterns to calibrate stereo images, I found that even with a slight deformation in your chessboard pattern, for example that it isn't flat, can produce large warping in the stereo image pair on rectification. The algorithms in OpenCV, for instance, assume a flat chessboard pattern is being presented such that any physical deformation in that pattern will be wrongly attributed to distortions in the camera optics (or in the relative orientations of the two camera sensors). The algorithms will then try really hard to remove this false distortion leading to very warped images.
To avoid this problem, were possible, use a tablet (or other electronic screen) to display the chessboard pattern as it is then guaranteed to be flat.
Additionally, you should check that the images you are using to calibrate the stereo pair are in focus and have no motion blur or image tearing.
If using OpenCV to do the rectification do some experimentation with the flags used in the stereoCalibrate function as this may lead to a more "optimised" rectification for your particular application.
Upvotes: 2
Reputation: 2342
I had the same problem, and I think that the issue was bad chessboard used to calibration or mixing up the maps.
Upvotes: 0