Reputation: 85
What are concrete examples (e.g. Alpha-beta pruning, example:tic-tac-toe and how is it applicable there) of heuristics. I already saw an answered question about what heuristics is but I still don't get the thing where it uses estimation. Can you give me a concrete example of a heuristic and how it works?
Upvotes: 6
Views: 5167
Reputation: 1045
The original question asked for concrete examples for heuristics.
Some of these concrete examples were already given. Another one would be the number of misplaced tiles in the 15-puzzle or its improvement, the Manhattan distance, based on the misplaced tiles.
One of the previous answers also claimed that heuristics are always problem-dependent, whereas algorithms are problem-independent. While there are, of course, also problem-dependent algorithms (for instance, for every problem you can just give an algorithm that immediately solves that very problem, e.g. the optimal strategy for any tower-of-hanoi problem is known) there are also problem-independent heuristics!
Consequently, there are also different kinds of problem-independent heuristics. Thus, in a certain way, every such heuristic can be regarded a concrete heuristic example while not being tailored to a specific problem like 15-puzzle. (Examples for problem-independent heuristics taken from planning are the FF heuristic or the Add heuristic.)
These problem-independent heuristics base on a general description language and then they perform a problem relaxation. That is, the problem relaxation only bases on the syntax (and, of course, its underlying semantics) of the problem description without "knowing" what it represents. If you are interested in this, you should get familiar with "planning" and, more specifically, with "planning as heuristic search". I also want to mention that these heuristics, while being problem-independent, are dependent on the problem description language, of course. (E.g., my before-mentioned heuristics are specific to "planning problems" and even for planning there are various different sub problem classes with differing kinds of heuristics.)
Upvotes: 0
Reputation: 32502
Most demonstrative is the usage of heuristics in informed search algorithms, such as A-Star. For realistic problems you usually have large search space, making it infeasible to check every single part of it. To avoid this, i.e. to try the most promising parts of the search space first, you use a heuristic. A heuristic gives you an estimate of how good the available subsequent search steps are. You will choose the most promising next step, i.e. best-first. For example if you'd like to search the path between two cities (i.e. vertices, connected by a set of roads, i.e. edges, that form a graph) you may want to choose the straight-line distance to the goal as a heuristic to determine which city to visit first (and see if it's the target city).
Heuristics should have similar properties as metrics for the search space and they usually should be optimistic, but that's another story. The problem of providing a heuristic that works out to be effective and that is side-effect free is yet another problem...
For an application of different heuristics being used to find the path through a given maze also have a look at this answer.
Upvotes: 4
Reputation: 41
Warnsdorff's rule is an heuristic, but the A*
search algorithm isn't. It is, as its name implies, a search algorithm, which is not problem-dependent. The heuristic is. An example: you can use the A*
(if correctly implemented) to solve the Fifteen puzzle and to find the shortest way out of a maze, but the heuristics used will be different. With the Fifteen puzzle your heuristic could be how many tiles are out of place: the number of moves needed to solve the puzzle will always be greater or equal to the heuristic.
To get out of the maze you could use the Manhattan Distance to a point you know is outside of the maze as your heuristic. Manhattan Distance is widely used in game-like problems as it is the number of "steps" in horizontal and in vertical needed to get to the goal.
Manhattan distance = abs(x2-x1) + abs(y2-y1)
It's easy to see that in the best case (there are no walls) that will be the exact distance to the goal, in the rest you will need more. This is important: your heuristic must be optimistic (admissible heuristic) so that your search algorithm is optimal. It must also be consistent. However, in some applications (such as games with very big maps) you use non-admissible heuristics because a suboptimal solution suffices.
A heuristic is just an approximation to the real cost, (always lower than the real cost if admissible). The better the approximation, the fewer states the search algorithm will have to explore. But better approximations usually mean more computing time, so you have to find a compromise solution.
Upvotes: 4
Reputation: 236004
A couple of concrete examples: for solving the Knight's Tour problem, one can use Warnsdorff's rule - an heuristic. Or for solving the Fifteen puzzle, a possible heuristic is the A* search algorithm.
Upvotes: 0
Reputation: 8468
A concrete example: I've been doing a solver for the game JT's Block, which is roughly equivalent to the Same Game. The algorithm performs a breadth-first search on all possible hits, store the values, and performs to the next ply. Problem is the number of possible hits quickly grows out of control (10e30 estimated positions per game), so I need to prune the list of positions at each turn and only take the "best" of them.
Now, the definition of the "best" positions is quite fuzzy: they are the positions that are expected to lead to the best final scores, but nothing is sure. And here comes the heuristics. I've tried a few of them:
The last of these heuristic could have lead to an ant-march optimization: there's half a dozen parameters that can be tweaked from 0 to 1, and an optimizer could find the optimal combination of these. For the moment I've just manually improved some of them.
The second of this heuristics is interesting: it could lead to the optimal score through a full depth-first search, but such a goal is impossible of course because it would take too much time. In general, increasing X leads to a better heuristic, but increases the computing time a lot.
So here it is, some examples of heuristics. Anything can be an heuristic as long as it helps your algorithm perform better, and it's what makes them so hard to grasp: they're not deterministic. Another point with heuristics: they're supposed to lead to quick and dirty results of the real stuff, so there's a trade-of between their execution time and their accuracy.
Upvotes: 1
Reputation: 367
Your question interests me as I've heard about heuristics too during my studies but never saw an application for it, I googled a bit and found this : http://www.predictia.es/blog/aco-search
This code simulate an "ant colony optimization" algorithm to search trough a website. The "ants" are workers which will search through the site, some will search randomly, some others will follow the "best path" determined by the previous ones.
Upvotes: 1