Eli Courtwright
Eli Courtwright

Reputation: 193151

Shortest distance between a point and a line segment

I need a basic function to find the shortest distance between a point and a line segment. Feel free to write the solution in any language you want; I can translate it into what I'm using (Javascript).

EDIT: My line segment is defined by two endpoints. So my line segment AB is defined by the two points A (x1,y1) and B (x2,y2). I'm trying to find the distance between this line segment and a point C (x3,y3). My geometry skills are rusty, so the examples I've seen are confusing, I'm sorry to admit.

Upvotes: 454

Views: 366798

Answers (30)

Kamil Kiełczewski
Kamil Kiełczewski

Reputation: 92647

Typescript + Test Cases

Here is ts version of improved this js solution

type Point2D = {x:number, y:number}; 

const distToSegment = (p: Point2D, segment: { a: Point2D; b: Point2D }): number => {
  const v = segment.a;
  const w = segment.b;
  const dist2 = (v: Point2D, w: Point2D) => (v.x - w.x) ** 2 + (v.y - w.y) ** 2;
  const l2 = dist2(v, w);

  if (l2 === 0) return dist2(p, v);

  let t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
  t = Math.max(0, Math.min(1, t));

  return (dist2(p, {
    x: v.x + t * (w.x - v.x),
    y: v.y + t * (w.y - v.y),
  }) ** 0.5);
};

// usage: distToSegment({x:1,y:2},{a:{x:3,y:4},b:{x:5,y:6}});

Tests

But, what is more important - I create some test cases with integer values.

For testing, we will use three right-angled triangles and their modifications, where the segment will be the longest side of the triangle. The triangles have an interesting property: the side lengths, the height dropped onto the longest side, and the coordinates of the vertices are integers (and the segment AB lies on the OX axis, with point A at the origin of the coordinate system)

  • A=(0,0), B=(25, 0), p=(9, 12), side lengths: 15,20,25, dist |AB,p| is 12
  • A=(0,0), B=(169, 0), p=(25, 60), side lengths: 65, 156, 169, dist |AB,p| is 60
  • A=(0,0), B=(289, 0), p=(64, 120), side lengths: 136,255,289, dist |AB,p| is 120

Modifications generating more tests: shifting point p parallel to the segment, reflection with respect to the OX axis, and rotations by 90, 180, and 270 degrees.

One of three triangles

distToSegment = (p, v, w) => {
  const dist2 = (v, w) => (v.x - w.x) ** 2 + (v.y - w.y) ** 2;
  const l2 = dist2(v, w);

  if (l2 === 0) return dist2(p, v);

  let t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
  t = Math.max(0, Math.min(1, t));

  return (
    dist2(p, {
        x: v.x + t * (w.x - v.x),
        y: v.y + t * (w.y - v.y),
    }) ** 0.5
  );
};



// ------------ TESTS ------------
    
tests = [
  // main cases
  
  { "p": { "x": 9,  "y": 12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 12 },
  { "p": { "x": 25, "y": 60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 60 },
  { "p": { "x": 64, "y": 120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 120},

  // main cases variants:

  // shift and rotate main-cases (by non-trivial angle) to put p at (0,0)
  {"p": {"x": 0, "y": 0}, "a": {"x": 15, "y": 0}, "b": {"x": 0, "y": 20}, "dist": 12},
  {"p": {"x": 0, "y": 0}, "a": {"x": 65, "y": 0}, "b": {"x": 0, "y": 156}, "dist": 60},
  {"p": {"x": 0, "y": 0}, "a": {"x": 136, "y": 0}, "b": {"x": 0, "y": 255}, "dist": 120}, 
  
  // mirror oX
  { "p": { "x": 9,  "y": -12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 12 },
  { "p": { "x": 25, "y": -60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 60 },
  { "p": { "x": 64, "y": -120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 120},
  // move p to x=0
  { "p": { "x": 0,  "y": 12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 12 },
  { "p": { "x": 0, "y": 60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 60 },
  { "p": { "x": 0, "y": 120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 120},
  // move p to x=-9
  { "p": { "x": -9,  "y": 12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 15 },
  { "p": { "x": -45, "y": 60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 75 },
  { "p": { "x": -90, "y": 120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 150},
  // move p to x=b
  { "p": { "x": 25,  "y": 12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 12 },
  { "p": { "x": 169, "y": 60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 60 },
  { "p": { "x": 289, "y": 120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 120},
  // move p to x=b
  { "p": { "x": 25,  "y": 12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 12 },
  { "p": { "x": 169, "y": 60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 60 },
  { "p": { "x": 289, "y": 120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 120},
  // move p to x>b
  { "p": { "x": 34,  "y": 12  }, "a": { "x": 0, "y": 0 }, "b": { "x": 25,  "y": 0 }, "dist": 15 },
  { "p": { "x": 214, "y": 60  }, "a": { "x": 0, "y": 0 }, "b": { "x": 169, "y": 0 }, "dist": 75 },
  { "p": { "x": 379, "y": 120 }, "a": { "x": 0, "y": 0 }, "b": { "x": 289, "y": 0 }, "dist": 150},
  
];

// we will rotate all test to get more cases
function rotateTriangleTestCase(triangle) {
    return [0, 90, 180, 270].map(angle => {
        const dxA = triangle.a.x - triangle.p.x;
        const dyA = triangle.a.y - triangle.p.y;
        const dxB = triangle.b.x - triangle.p.x;
        const dyB = triangle.b.y - triangle.p.y;
        
        let a, b;
        switch (angle) {
            case 90:
                a = { x: triangle.p.x - dyA, y: triangle.p.y + dxA };
                b = { x: triangle.p.x - dyB, y: triangle.p.y + dxB };
                break;
            case 180:
                a = { x: triangle.p.x - dxA, y: triangle.p.y - dyA };
                b = { x: triangle.p.x - dxB, y: triangle.p.y - dyB };
                break;
            case 270:
                a = { x: triangle.p.x + dyA, y: triangle.p.y - dxA };
                b = { x: triangle.p.x + dyB, y: triangle.p.y - dxB };
                break;
            default:
                a = triangle.a;
                b = triangle.b;
        }
        
        return { p: triangle.p, a, b, dist: triangle.dist, rot: angle };
    });
}

testsWithRotations = tests.map(rotateTriangleTestCase).flat();
code.innerText = JSON.stringify(testsWithRotations, null);
    
testsWithRotations.forEach((test,i) => {
  result = distToSegment(test.p, test.a, test.b);
  diff = test.dist - result;
  console.log(`Test: ${i} rot: ${test.rot}° ` + (diff==0 ? 'OK' : `Fail - result:${result} ` + JSON.stringify(test) ))
})
All cases:<br>
<code id=code></code>

Upvotes: 0

OzRunways
OzRunways

Reputation: 1

Here it is using Swift

    /* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
    let A = p.x - l1.x
    let B = p.y - l1.y
    let C = l2.x - l1.x
    let D = l2.y - l1.y
    
    let dot = A * C + B * D
    let len_sq = C * C + D * D
    var param : CGFloat = -1
    if len_sq != 0 {
        param = dot / len_sq
    }
    
    var xx, yy: CGFloat
    
    if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
        xx = l1.x
        yy = l1.y
    } else if param > 1 {
        xx = l2.x
        yy = l2.y
    } else {
        xx = l1.x + param * C
        yy = l1.y + param * D
    }
    
    let dx = p.x - xx
    let dy = p.y - yy
    
    return sqrt(dx * dx + dy * dy)
}

Upvotes: 6

Xelnath
Xelnath

Reputation: 63

C# Version

public static FP DistanceToLineSegment(FPVector3 a, FPVector3 b, FPVector3 point)
{
  var d = b - a;
  var s = d.SqrMagnitude;
  var ds = d / s;
  var lambda = FPVector3.Dot(point - a, ds);
  var p = FPMath.Clamp01(lambda) * d;
  return (a + p - point).Magnitude;
}

Upvotes: 3

Crystal-R
Crystal-R

Reputation: 71

You can try the library for PHP geo-math-php

composer require rkondratuk/geo-math-php:^1

Example:

<?php

use PhpGeoMath\Model\GeoSegment;
use PhpGeoMath\Model\Polar3dPoint;

$polarPoint1 = new Polar3dPoint(
    40.758742779050706, -73.97855507715238, Polar3dPoint::EARTH_RADIUS_IN_METERS
);

$polarPoint2 = new Polar3dPoint(
    40.74843388072615, -73.98566565776102, Polar3dPoint::EARTH_RADIUS_IN_METERS
);

$polarPoint3 = new Polar3dPoint(
    40.74919365249446, -73.98133456388013, Polar3dPoint::EARTH_RADIUS_IN_METERS
);

$arcSegment = new GeoSegment($polarPoint1, $polarPoint2);
$nearestPolarPoint = $arcSegment->calcNearestPoint($polarPoint3);

// Shortest distance from point-3 to segment(point-1, point-2)
$geoDistance = $nearestPolarPoint->calcGeoDistanceToPoint($polarPoint3);

Upvotes: 0

Joshua
Joshua

Reputation: 3515

Here is the simplest complete code in Javascript.

x, y is your target point and x1, y1 to x2, y2 is your line segment.

UPDATED: fix for 0 length line problem from comments.

function pDistance(x, y, x1, y1, x2, y2) {

  var A = x - x1;
  var B = y - y1;
  var C = x2 - x1;
  var D = y2 - y1;

  var dot = A * C + B * D;
  var len_sq = C * C + D * D;
  var param = -1;
  if (len_sq != 0) //in case of 0 length line
      param = dot / len_sq;

  var xx, yy;

  if (param < 0) {
    xx = x1;
    yy = y1;
  }
  else if (param > 1) {
    xx = x2;
    yy = y2;
  }
  else {
    xx = x1 + param * C;
    yy = y1 + param * D;
  }

  var dx = x - xx;
  var dy = y - yy;
  return Math.sqrt(dx * dx + dy * dy);
}

Image to help visualize the solution

UPDATED: Kotlin version

fun getDistance(x: Double, y: Double, x1: Double, y1: Double, x2: Double, y2: Double): Double {
    val a = x - x1
    val b = y - y1
    val c = x2 - x1
    val d = y2 - y1

    val lenSq = c * c + d * d
    val param = if (lenSq != .0) { //in case of 0 length line
        val dot = a * c + b * d
        dot / lenSq
    } else {
        -1.0
    }

    val (xx, yy) = when {
        param < 0 -> x1 to y1
        param > 1 -> x2 to y2
        else -> x1 + param * c to y1 + param * d
    }

    val dx = x - xx
    val dy = y - yy
    return hypot(dx, dy)
}

Upvotes: 236

darkfrei
darkfrei

Reputation: 586

The Lua solution

-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
    local dx,dy = x2-x1,y2-y1
    local length = math.sqrt(dx*dx+dy*dy)
    dx,dy = dx/length,dy/length -- normalization
    local p = dx*(px-x1)+dy*(py-y1)
    if p < 0 then
        dx,dy = px-x1,py-y1
        return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
    elseif p > length then
        dx,dy = px-x2,py-y2
        return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
    end
    return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end

For polyline (line with more than two segments):

-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
    local x1, y1, x2, y2, min_dist
    local ax,ay = line[1], line[2]
    for j = 3, #line-1, 2 do
        local bx,by = line[j], line[j+1]
        local dist = distPointToLine(x,y,ax,ay,bx,by)
        if not min_dist or dist < min_dist then
            min_dist = dist
            x1, y1, x2, y2 = ax,ay,bx,by
        end
        ax, ay = bx, by
    end
    return x1, y1, x2, y2
end

Example:

-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})

Upvotes: 0

Grumdrig
Grumdrig

Reputation: 16975

Eli, the code you've settled on is incorrect. A point near the line on which the segment lies but far off one end of the segment would be incorrectly judged near the segment. Update: The incorrect answer mentioned is no longer the accepted one.

Here's some correct code, in C++. It presumes a class 2D-vector class vec2 {float x,y;}, essentially, with operators to add, subract, scale, etc, and a distance and dot product function (i.e. x1 x2 + y1 y2).

float minimum_distance(vec2 v, vec2 w, vec2 p) {
  // Return minimum distance between line segment vw and point p
  const float l2 = length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  if (l2 == 0.0) return distance(p, v);   // v == w case
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line. 
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  // We clamp t from [0,1] to handle points outside the segment vw.
  const float t = max(0, min(1, dot(p - v, w - v) / l2));
  const vec2 projection = v + t * (w - v);  // Projection falls on the segment
  return distance(p, projection);
}

EDIT: I needed a Javascript implementation, so here it is, with no dependencies (or comments, but it's a direct port of the above). Points are represented as objects with x and y attributes.

function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
  var l2 = dist2(v, w);
  if (l2 == 0) return dist2(p, v);
  var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
  t = Math.max(0, Math.min(1, t));
  return dist2(p, { x: v.x + t * (w.x - v.x),
                    y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }

EDIT 2: I needed a Java version, but more important, I needed it in 3d instead of 2d.

float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
  float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
  if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
  float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
  t = constrain(t, 0, 1);
  return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}

Here, in the function parameters, <px,py,pz> is the point in question and the line segment has the endpoints <lx1,ly1,lz1> and <lx2,ly2,lz2>. The function dist_sq (which is assumed to exist) finds the square of the distance between two points.

Upvotes: 530

Tavurth
Tavurth

Reputation: 41

I needed a Godot (GDscript) implementation of this so I wrote one based on grumdrig's accepted answer:

func minimum_distance(v: Vector2, w: Vector2, p: Vector2):
    # Return minimum distance between line segment vw and point p
    var l2: float = (v - w).length_squared()  # i.e. |w-v|^2 -  avoid a sqrt
    if l2 == 0.0:
        return p.distance_to(v) # v == w case

    # Consider the line extending the segment, parameterized as v + t (w - v).
    # We find projection of point p onto the line.
    # It falls where t = [(p-v) . (w-v)] / |w-v|^2
    # We clamp t from [0,1] to handle points outside the segment vw.
    var t: float = max(0, min(1, (p - v).dot(w - v) / l2))
    var projection: Vector2 = v + t * (w - v)  # Projection falls on the segment
    
    return p.distance_to(projection)

Upvotes: -1

gawi
gawi

Reputation: 2962

Here is SQL implementation for HSQLDB:

CREATE FUNCTION dist_to_segment(px double, py double, vx double, vy double, wx double, wy double)
  RETURNS double
BEGIN atomic
   declare l2 double;
   declare t double;
   declare nx double;
   declare ny double;
   set l2 =(vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
   IF l2 = 0 THEN
     RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
   ELSE
     set t = ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
     set t = GREATEST(0, LEAST(1, t));
     set nx=vx + t * (wx - vx);
     set ny=vy + t * (wy - vy);
     RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
   END IF;
END;

And implementation for Postgres:

CREATE FUNCTION dist_to_segment(px numeric, py numeric, vx numeric, vy numeric, wx numeric, wy numeric)
  RETURNS numeric
AS $$
   declare l2 numeric;
   declare t numeric;
   declare nx numeric;
   declare ny numeric;
BEGIN 
   l2 := (vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
   IF l2 = 0 THEN
     RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
   ELSE
     t := ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
     t := GREATEST(0, LEAST(1, t));
     nx := vx + t * (wx - vx);
     ny := vy + t * (wy - vy);
     RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
   END IF;
END;
$$ LANGUAGE plpgsql;

Upvotes: 0

schmidt9
schmidt9

Reputation: 4538

Swift implementation of http://paulbourke.net/geometry/pointlineplane/source.c

    static func magnitude(p1: CGPoint, p2: CGPoint) -> CGFloat {
        let vector = CGPoint(x: p2.x - p1.x, y: p2.y - p1.y)
        return sqrt(pow(vector.x, 2) + pow(vector.y, 2))
    }

    /// http://paulbourke.net/geometry/pointlineplane/
    /// http://paulbourke.net/geometry/pointlineplane/source.c
    static func pointDistanceToLine(point: CGPoint, lineStart: CGPoint, lineEnd: CGPoint) -> CGFloat? {

        let lineMag = magnitude(p1: lineEnd, p2: lineStart)
        let u = (((point.x - lineStart.x) * (lineEnd.x - lineStart.x)) +
                ((point.y - lineStart.y) * (lineEnd.y - lineStart.y))) /
                (lineMag * lineMag)

        if u < 0 || u > 1 {
            // closest point does not fall within the line segment
            return nil
        }

        let intersectionX = lineStart.x + u * (lineEnd.x - lineStart.x)
        let intersectionY = lineStart.y + u * (lineEnd.y - lineStart.y)

        return magnitude(p1: point, p2: CGPoint(x: intersectionX, y: intersectionY))
    }

Upvotes: 1

n1nj4
n1nj4

Reputation: 526

Python Numpy implementation for 2D coordinate array:

import numpy as np


def dist2d(p1, p2, coords):
    ''' Distance from points to a finite line btwn p1 -> p2 '''
    assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
    dp = p2 - p1
    st = dp[0]**2 + dp[1]**2
    u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st

    u[u > 1.] = 1.
    u[u < 0.] = 0.

    dx = (p1[0] + u * dp[0]) - coords[:, 0]
    dy = (p1[1] + u * dp[1]) - coords[:, 1]

    return np.sqrt(dx**2 + dy**2)


# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])

# List of coordinates
coords = np.array(
    [[0., 0.],
     [5., 5.],
     [10., 10.],
     [20., 20.]
     ])

d = dist2d(p1, p2, coords)

# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])

Upvotes: 2

otto
otto

Reputation: 2043

Solution for dart and flutter:

import 'dart:math' as math;
 class Utils {
   static double shortestDistance(Point p1, Point p2, Point p3){
      double px = p2.x - p1.x;
      double py = p2.y - p1.y;
      double temp = (px*px) + (py*py);
      double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
      if(u>1){
        u=1;
      }
      else if(u<0){
        u=0;
      }
      double x = p1.x + u*px;
      double y = p1.y + u*py;
      double dx = x - p3.x;
      double dy = y - p3.y;
      double dist = math.sqrt(dx*dx+dy*dy);
      return dist;
   }
}

class Point {
  double x;
  double y;
  Point(this.x, this.y);
}

Upvotes: 1

quano
quano

Reputation: 19152

This is an implementation made for FINITE LINE SEGMENTS, not infinite lines like most other functions here seem to be (that's why I made this).

Implementation of theory by Paul Bourke.

Python:

def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
    px = x2-x1
    py = y2-y1

    norm = px*px + py*py

    u =  ((x3 - x1) * px + (y3 - y1) * py) / float(norm)

    if u > 1:
        u = 1
    elif u < 0:
        u = 0

    x = x1 + u * px
    y = y1 + u * py

    dx = x - x3
    dy = y - y3

    # Note: If the actual distance does not matter,
    # if you only want to compare what this function
    # returns to other results of this function, you
    # can just return the squared distance instead
    # (i.e. remove the sqrt) to gain a little performance

    dist = (dx*dx + dy*dy)**.5

    return dist

AS3:

public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
    var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
    var something:Number = p2.x*p2.x + p2.y*p2.y;
    var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;

    if (u > 1)
        u = 1;
    else if (u < 0)
        u = 0;

    var x:Number = segA.x + u * p2.x;
    var y:Number = segA.y + u * p2.y;

    var dx:Number = x - p.x;
    var dy:Number = y - p.y;

    var dist:Number = Math.sqrt(dx*dx + dy*dy);

    return dist;
}

Java

private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
    {
        float px=x2-x1;
        float py=y2-y1;
        float temp=(px*px)+(py*py);
        float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
        if(u>1){
            u=1;
        }
        else if(u<0){
            u=0;
        }
        float x = x1 + u * px;
        float y = y1 + u * py;

        float dx = x - x3;
        float dy = y - y3;
        double dist = Math.sqrt(dx*dx + dy*dy);
        return dist;

    }

Upvotes: 84

BBSysDyn
BBSysDyn

Reputation: 4601

Here is one based on vector math; this solution will also work for higher dimensions and also report on the interection point (on the line segment).

def dist(x1,y1,x2,y2,px,py):
    a = np.array([[x1,y1]]).T
    b = np.array([[x2,y2]]).T
    x = np.array([[px,py]]).T
    tp = (np.dot(x.T, b) - np.dot(a.T, b)) / np.dot(b.T, b)
    tp = tp[0][0]
    tmp = x - (a + tp*b)
    d = np.sqrt(np.dot(tmp.T,tmp)[0][0])
    return d, a+tp*b

x1,y1=2.,2.
x2,y2=5.,5.
px,py=4.,1.

d, inters = dist(x1,y1, x2,y2, px,py)
print (d)
print (inters)

Result is

2.1213203435596424
[[2.5]
 [2.5]]

The math is explained here

https://brilliant.org/wiki/distance-between-point-and-line/

Upvotes: 1

user7132587
user7132587

Reputation: 567

I've made an interactive Desmos graph to demonstrate how to achieve this:

https://www.desmos.com/calculator/kswrm8ddum

The red point is A, the green point is B, and the point C is blue. You can drag the points in the graph to see the values change. On the left, the value 's' is the parameter of the line segment (i.e. s = 0 means the point A, and s = 1 means the point B). The value 'd' is the distance from the third point to the line through A and B.

EDIT:

Fun little insight: the coordinate (s, d) is the coordinate of the third point C in the coordinate system where AB is the unit x-axis, and the unit y-axis is perpendicular to AB.

Upvotes: 2

Elvedin Hamzagic
Elvedin Hamzagic

Reputation: 855

This algorithm is based on finding the intersection between the specified line and the orthogonal line, which contains the specified point, and calculating its distance. In case of a line segment, we must check if the intersection is between points of the line segment, if that's not the case then the minimum distance is between the specified point and one of the ending points of the line segment. This is a C# implementation.

Double Distance(Point a, Point b)
{
    double xdiff = a.X - b.X, ydiff = a.Y - b.Y;
    return Math.Sqrt((long)xdiff * xdiff + (long)ydiff * ydiff);
}

Boolean IsBetween(double x, double a, double b)
{
    return ((a <= b && x >= a && x <= b) || (a > b && x <= a && x >= b));
}

Double GetDistance(Point pt, Point pt1, Point pt2, out Point intersection)
{
    Double a, x, y, R;

    if (pt1.X != pt2.X) {
        a = (double)(pt2.Y - pt1.Y) / (pt2.X - pt1.X);
        x = (a * (pt.Y - pt1.Y) + a * a * pt1.X + pt.X) / (a * a + 1);
        y = a * x + pt1.Y - a * pt1.X; }
    else { x = pt1.X;  y = pt.Y; }

    if (IsBetween(x, pt1.X, pt2.X) && IsBetween(y, pt1.Y, pt2.Y)) {
        intersection = new Point((int)x, (int)y);
        R = Distance(intersection, pt); }
    else {
        double d1 = Distance(pt, pt1), d2 = Distance(pt, pt2);
        if (d1 < d2) { intersection = pt1; R = d1; }
        else { intersection = pt2; R = d2; }}

    return R;
}

Upvotes: 1

Dr. belisarius
Dr. belisarius

Reputation: 61056

In Mathematica

It uses a parametric description of the segment, and projects the point into the line defined by the segment. As the parameter goes from 0 to 1 in the segment, if the projection is outside this bounds, we compute the distance to the corresponding enpoint, instead of the straight line normal to the segment.

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

Plotting result:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

alt text

Plot those points nearer than a cutoff distance:

alt text

Contour Plot:

enter image description here

Upvotes: 21

J D
J D

Reputation: 48697

In F#, the distance from the point c to the line segment between a and b is given by:

let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
  let d = b - a
  let s = d.Length
  let lambda = (c - a) * d / s
  let p = (lambda |> max 0.0 |> min s) * d / s
  (a + p - c).Length

The vector d points from a to b along the line segment. The dot product of d/s with c-a gives the parameter of the point of closest approach between the infinite line and the point c. The min and max function are used to clamp this parameter to the range 0..s so that the point lies between a and b. Finally, the length of a+p-c is the distance from c to the closest point on the line segment.

Example use:

pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))

Upvotes: 21

char m
char m

Reputation: 8336

In my own question thread how to calculate shortest 2D distance between a point and a line segment in all cases in C, C# / .NET 2.0 or Java? I was asked to put a C# answer here when I find one: so here it is, modified from http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static :

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

I'm @SO not to answer but ask questions so I hope I don't get million down votes for some reasons but constructing critic. I just wanted (and was encouraged) to share somebody else's ideas since the solutions in this thread are either with some exotic language (Fortran, Mathematica) or tagged as faulty by somebody. The only useful one (by Grumdrig) for me is written with C++ and nobody tagged it faulty. But it's missing the methods (dot etc.) that are called.

Upvotes: 23

GrandmasterB
GrandmasterB

Reputation: 3455

Here's a self contained Delphi / Pascal version of the function based on Joshua's answer up above. Uses TPoint for VCL screen graphics, but should be easy to adjust as needed.

function DistancePtToSegment( pt, pt1, pt2: TPoint): double;
var
   a, b, c, d: double;
   len_sq: double;
   param: double;
   xx, yy: double;
   dx, dy: double;
begin
   a := pt.x - pt1.x;
   b := pt.y - pt1.y;
   c := pt2.x - pt1.x;
   d := pt2.y - pt1.y;

   len_sq := (c * c) + (d * d);
   param := -1;

   if (len_sq <> 0) then
   begin
      param := ((a * c) + (b * d)) / len_sq;
   end;

   if param < 0 then
   begin
      xx := pt1.x;
      yy := pt1.y;
   end
   else if param > 1 then
   begin
      xx := pt2.x;
      yy := pt2.y;
   end
   else begin
      xx := pt1.x + param * c;
      yy := pt1.y + param * d;
   end;

   dx := pt.x - xx;
   dy := pt.y - yy;
   result := sqrt( (dx * dx) + (dy * dy))
end;

Upvotes: 0

eshafeeqe
eshafeeqe

Reputation: 1

Eigen C++ Version for 3D line segment and point

// Return minimum distance between line segment: head--->tail and point
double MinimumDistance(Eigen::Vector3d head, Eigen::Vector3d tail,Eigen::Vector3d point)
{
    double l2 = std::pow((head - tail).norm(),2);
    if(l2 ==0.0) return (head - point).norm();// head == tail case

    // Consider the line extending the segment, parameterized as head + t (tail - point).
    // We find projection of point onto the line.
    // It falls where t = [(point-head) . (tail-head)] / |tail-head|^2
    // We clamp t from [0,1] to handle points outside the segment head--->tail.

    double t = max(0,min(1,(point-head).dot(tail-head)/l2));
    Eigen::Vector3d projection = head + t*(tail-head);

    return (point - projection).norm();
}

Upvotes: 0

user1196549
user1196549

Reputation:

A 2D and 3D solution

Consider a change of basis such that the line segment becomes (0, 0, 0)-(d, 0, 0) and the point (u, v, 0). The shortest distance occurs in that plane and is given by

    u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u     -> d(B, C)

(the distance to one of the endpoints or to the supporting line, depending on the projection to the line. The iso-distance locus is made of two half-circles and two line segments.)

enter image description here

In the above expression, d is the length of the segment AB, and u, v are respectivey the scalar product and (modulus of the) cross product of AB/d (unit vector in the direction of AB) and AC. Hence vectorially,

AB.AC ≤ 0             -> |AC|
    0 ≤ AB.AC ≤ AB²   -> |ABxAC|/|AB|
          AB² ≤ AB.AC -> |BC|

Upvotes: 3

Johannes Beutel
Johannes Beutel

Reputation: 61

GLSL version:

// line (a -> b ) point p[enter image description here][1]
float distanceToLine(vec2 a, vec2 b, vec2 p) {
    float aside = dot((p - a),(b - a));
    if(aside< 0.0) return length(p-a);
    float bside = dot((p - b),(a - b));
    if(bside< 0.0) return length(p-b);
    vec2 pointOnLine = (bside*a + aside*b)/pow(length(a-b),2.0);
    return length(p - pointOnLine);
}

Upvotes: 2

Giuseppe Canale
Giuseppe Canale

Reputation: 525

In javascript using Geometry:

var a = { x:20, y:20};//start segment    
var b = { x:40, y:30};//end segment   
var c = { x:37, y:14};//point   

// magnitude from a to c    
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );    
// magnitude from b to c   
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );    
// magnitude from a to b (base)     
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );    
 // perimeter of triangle     
var p = ac + bc + ab;    
 // area of the triangle    
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );    
 // height of the triangle = distance    
var h = ( area * 2 ) / ab;    
console.log ("height: " + h);

Upvotes: 0

Anton  Pletenev
Anton Pletenev

Reputation: 1

in R

     #distance beetween segment ab and point c in 2D space
getDistance_ort_2 <- function(a, b, c){
  #go to complex numbers
  A<-c(a[1]+1i*a[2],b[1]+1i*b[2])
  q=c[1]+1i*c[2]
  
  #function to get coefficients of line (ab)
  getAlphaBeta <- function(A)
  { a<-Re(A[2])-Re(A[1])
    b<-Im(A[2])-Im(A[1])
    ab<-as.numeric()
    ab[1] <- -Re(A[1])*b/a+Im(A[1])
    ab[2] <-b/a
    if(Im(A[1])==Im(A[2])) ab<- c(Im(A[1]),0)
    if(Re(A[1])==Re(A[2])) ab <- NA
    return(ab)
  }
  
  #function to get coefficients of line ortogonal to line (ab) which goes through point q
  getAlphaBeta_ort<-function(A,q)
  { ab <- getAlphaBeta(A) 
  coef<-c(Re(q)/ab[2]+Im(q),-1/ab[2])
  if(Re(A[1])==Re(A[2])) coef<-c(Im(q),0)
  return(coef)
  }
  
  #function to get coordinates of interception point 
  #between line (ab) and its ortogonal which goes through point q
  getIntersection_ort <- function(A, q){
    A.ab <- getAlphaBeta(A)
    q.ab <- getAlphaBeta_ort(A,q)
    if (!is.na(A.ab[1])&A.ab[2]==0) {
      x<-Re(q)
      y<-Im(A[1])}
    if (is.na(A.ab[1])) {
      x<-Re(A[1])
      y<-Im(q)
    } 
    if (!is.na(A.ab[1])&A.ab[2]!=0) {
      x <- (q.ab[1] - A.ab[1])/(A.ab[2] - q.ab[2])
      y <- q.ab[1] + q.ab[2]*x}
    xy <- x + 1i*y  
    return(xy)
  }
  
  intersect<-getIntersection_ort(A,q)
  if ((Mod(A[1]-intersect)+Mod(A[2]-intersect))>Mod(A[1]-A[2])) {dist<-min(Mod(A[1]-q),Mod(A[2]-q))
  } else dist<-Mod(q-intersect)
  return(dist)
}



 

Upvotes: 0

1j01
1j01

Reputation: 4189

This answer is based on the accepted answer's JavaScript solution. It's mainly just formatted nicer, with longer function names, and of course shorter function syntax because it's in ES6 + CoffeeScript.

JavaScript version (ES6)

distanceSquared = (v, w)=> Math.pow(v.x - w.x, 2) + Math.pow(v.y - w.y, 2);
distance = (v, w)=> Math.sqrt(distanceSquared(v, w));

distanceToLineSegmentSquared = (p, v, w)=> {
    l2 = distanceSquared(v, w);
    if (l2 === 0) {
        return distanceSquared(p, v);
    }
    t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    t = Math.max(0, Math.min(1, t));
    return distanceSquared(p, {
        x: v.x + t * (w.x - v.x),
        y: v.y + t * (w.y - v.y)
    });
}
distanceToLineSegment = (p, v, w)=> {
    return Math.sqrt(distanceToLineSegmentSquared(p, v));
}

CoffeeScript version

distanceSquared = (v, w)-> (v.x - w.x) ** 2 + (v.y - w.y) ** 2
distance = (v, w)-> Math.sqrt(distanceSquared(v, w))

distanceToLineSegmentSquared = (p, v, w)->
    l2 = distanceSquared(v, w)
    return distanceSquared(p, v) if l2 is 0
    t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2
    t = Math.max(0, Math.min(1, t))
    distanceSquared(p, {
        x: v.x + t * (w.x - v.x)
        y: v.y + t * (w.y - v.y)
    })

distanceToLineSegment = (p, v, w)->
    Math.sqrt(distanceToLineSegmentSquared(p, v, w))

Upvotes: 1

peter karasev
peter karasev

Reputation: 2614

Matlab code, with built-in "self test" if they call the function with no arguments:

function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )

if( nargin < 3 )
    selfTest();
    r=0;
else
    vx = xy0(1)-xyP(1);
    vy = xy0(2)-xyP(2);
    ux = xy1(1)-xy0(1);
    uy = xy1(2)-xy0(2);
    lenSqr= (ux*ux+uy*uy);
    detP= -vx*ux + -vy*uy;

    if( detP < 0 )
        r = norm(xy0-xyP,2);
    elseif( detP > lenSqr )
        r = norm(xy1-xyP,2);
    else
        r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
    end
end


    function selfTest()
        %#ok<*NASGU>
        disp(['invalid args, distPointToLineSegment running (recursive)  self-test...']);

        ptA = [1;1]; ptB = [-1;-1];
        ptC = [1/2;1/2];  % on the line
        ptD = [-2;-1.5];  % too far from line segment
        ptE = [1/2;0];    % should be same as perpendicular distance to line
        ptF = [1.5;1.5];      % along the A-B but outside of the segment

        distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
        distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
        distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
        distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
        figure(1); clf;
        circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
            'Curvature', [1 1], 'EdgeColor', c);
        plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
        plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
        plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
        plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
        plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
        hold off;
        axis([-3 3 -3 3]); axis equal;
    end

end

Upvotes: 5

Singh Lalit
Singh Lalit

Reputation: 521

Lua: Finds minimum distance between a line segment(not the whole line) and a point

function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
  local f1 = B1*C2 -B2*C1
  local f2 = A2*C1-A1*C2
  local f3 = A1*B2 -A2*B1
  return {x= f1/f3, y= f2/f3}
end


function pointLiesOnLine(x,y,x1,y1,x2,y2)
  local dx1 = x-x1
  local  dy1 = y-y1
  local dx2 = x-x2
  local  dy2 = y-y2
  local crossProduct = dy1*dx2 -dx1*dy2

if crossProduct ~= 0  then  return  false
else
  if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
    if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
      return true
    else return false end
  else  return false end
end
end


function dist(x1,y1,x2,y2)
  local dx = x1-x2
  local dy = y1-y2
  return math.sqrt(dx*dx + dy* dy)
 end


function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min  distance between (x3,y3) and line (x1,y2)--(x2,y2)
   local A2,B2,C2,A1,B1,C1
   local dx = y2-y1
   local dy = x2-x1
   if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1 
   elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
   else
      local m1 = dy/dx
      local m2 = -1/m1
      A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
   end
 local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
   return dist(intsecPoint.x, intsecPoint.y, x3,y3)
 else
   return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end

Upvotes: 0

woolie
woolie

Reputation: 11

Grumdrig's C++/JavaScript implementation was very useful to me, so I have provided a Python direct port that I am using. The complete code is here.

class Point(object):
  def __init__(self, x, y):
    self.x = float(x)
    self.y = float(y)

def square(x):
  return x * x

def distance_squared(v, w):
  return square(v.x - w.x) + square(v.y - w.y)

def distance_point_segment_squared(p, v, w):
  # Segment length squared, |w-v|^2
  d2 = distance_squared(v, w) 
  if d2 == 0: 
    # v == w, return distance to v
    return distance_squared(p, v)
  # Consider the line extending the segment, parameterized as v + t (w - v).
  # We find projection of point p onto the line.
  # It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
  if t < 0:
    # Beyond v end of the segment
    return distance_squared(p, v)
  elif t > 1.0:
    # Beyond w end of the segment
    return distance_squared(p, w)
  else:
    # Projection falls on the segment.
    proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
    # print proj.x, proj.y
    return distance_squared(p, proj)

Upvotes: 6

Mateen Ulhaq
Mateen Ulhaq

Reputation: 27261

C#

Adapted from @Grumdrig

public static double MinimumDistanceToLineSegment(this Point p,
    Line line)
{
    var v = line.StartPoint;
    var w = line.EndPoint;

    double lengthSquared = DistanceSquared(v, w);

    if (lengthSquared == 0.0)
        return Distance(p, v);

    double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
    var projection = v + t * (w - v);

    return Distance(p, projection);
}

public static double Distance(Point a, Point b)
{
    return Math.Sqrt(DistanceSquared(a, b));
}

public static double DistanceSquared(Point a, Point b)
{
    var d = a - b;
    return DotProduct(d, d);
}

public static double DotProduct(Point a, Point b)
{
    return (a.X * b.X) + (a.Y * b.Y);
}

Upvotes: 5

Related Questions