George
George

Reputation: 15561

C pointer to array/array of pointers disambiguation

What is the difference between the following declarations:

int* arr1[8];
int (*arr2)[8];
int *(arr3[8]);

What is the general rule for understanding more complex declarations?

Upvotes: 507

Views: 403792

Answers (12)

Krishna Kanth Yenumula
Krishna Kanth Yenumula

Reputation: 2567

int *arr1[5]

In this declaration, arr1 is an array of 5 pointers to integers. Reason: Square brackets have higher precedence over * (dereferncing operator). And in this type, number of rows are fixed (5 here), but number of columns is variable.

int (*arr2)[5]

In this declaration, arr2 is a pointer to an integer array of 5 elements. Reason: Here, () brackets have higher precedence than []. And in this type, number of rows is variable, but the number of columns is fixed (5 here).

Upvotes: 0

nishantbhardwaj2002
nishantbhardwaj2002

Reputation: 767

Here's how I interpret it:

int *something[n];

Note on precedence: array subscript operator ([]) has higher priority than dereference operator (*).

So, here we will apply the [] before *, making the statement equivalent to:

int *(something[i]);

Note on how a declaration makes sense: int num means num is an int, int *ptr or int (*ptr) means, (value at ptr) is an int, which makes ptr a pointer to int.

This can be read as, (value of the (value at ith index of the something)) is an integer. So, (value at the ith index of something) is an (integer pointer), which makes the something an array of integer pointers.

In the second one,

int (*something)[n];

To make sense out of this statement, you must be familiar with this fact:

Note on pointer representation of array: somethingElse[i] is equivalent to *(somethingElse + i)

So, replacing somethingElse with (*something), we get *(*something + i), which is an integer as per declaration. So, (*something) given us an array, which makes something equivalent to (pointer to an array).

Upvotes: 2

Hraban Luyat
Hraban Luyat

Reputation: 11

The answer for the last two can also be deducted from the golden rule in C:

Declaration follows use.

int (*arr2)[8];

What happens if you dereference arr2? You get an array of 8 integers.

int *(arr3[8]);

What happens if you take an element from arr3? You get a pointer to an integer.

This also helps when dealing with pointers to functions. To take sigjuice's example:

float *(*x)(void )

What happens when you dereference x? You get a function that you can call with no arguments. What happens when you call it? It will return a pointer to a float.

Operator precedence is always tricky, though. However, using parentheses can actually also be confusing because declaration follows use. At least, to me, intuitively arr2 looks like an array of 8 pointers to ints, but it is actually the other way around. Just takes some getting used to. Reason enough to always add a comment to these declarations, if you ask me :)

edit: example

By the way, I just stumbled across the following situation: a function that has a static matrix and that uses pointer arithmetic to see if the row pointer is out of bounds. Example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NUM_ELEM(ar) (sizeof(ar) / sizeof((ar)[0]))

int *
put_off(const int newrow[2])
{
    static int mymatrix[3][2];
    static int (*rowp)[2] = mymatrix;
    int (* const border)[] = mymatrix + NUM_ELEM(mymatrix);

    memcpy(rowp, newrow, sizeof(*rowp));
    rowp += 1;
    if (rowp == border) {
        rowp = mymatrix;
    }

    return *rowp;
}

int
main(int argc, char *argv[])
{
    int i = 0;
    int row[2] = {0, 1};
    int *rout;

    for (i = 0; i &lt; 6; i++) {
        row[0] = i;
        row[1] += i;
        rout = put_off(row);
        printf("%d (%p): [%d, %d]\n", i, (void *) rout, rout[0], rout[1]);
    }

    return 0;
}

Output:

0 (0x804a02c): [0, 0]
1 (0x804a034): [0, 0]
2 (0x804a024): [0, 1]
3 (0x804a02c): [1, 2]
4 (0x804a034): [2, 4]
5 (0x804a024): [3, 7]

Note that the value of border never changes, so the compiler can optimize that away. This is different from what you might initially want to use: const int (*border)[3]: that declares border as a pointer to an array of 3 integers that will not change value as long as the variable exists. However, that pointer may be pointed to any other such array at any time. We want that kind of behaviour for the argument, instead (because this function does not change any of those integers). Declaration follows use.

(p.s.: feel free to improve this sample!)

Upvotes: 16

GManNickG
GManNickG

Reputation: 504203

I don't know if it has an official name, but I call it the Right-Left Thingy(TM).

Start at the variable, then go right, and left, and right...and so on.

int* arr1[8];

arr1 is an array of 8 pointers to integers.

int (*arr2)[8];

arr2 is a pointer (the parenthesis block the right-left) to an array of 8 integers.

int *(arr3[8]);

arr3 is an array of 8 pointers to integers.

This should help you out with complex declarations.

Upvotes: 134

sigjuice
sigjuice

Reputation: 29787

Use the cdecl program, as suggested by K&R.

$ cdecl
Type `help' or `?' for help
cdecl> explain int* arr1[8];
declare arr1 as array 8 of pointer to int
cdecl> explain int (*arr2)[8]
declare arr2 as pointer to array 8 of int
cdecl> explain int *(arr3[8])
declare arr3 as array 8 of pointer to int
cdecl>

It works the other way too.

cdecl> declare x as pointer to function(void) returning pointer to float
float *(*x)(void )

Upvotes: 277

nishantbhardwaj2002
nishantbhardwaj2002

Reputation: 767

I guess the second declaration is confusing to many. Here's an easy way to understand it.

Lets have an array of integers, i.e. int B[8].

Let's also have a variable A which points to B. Now, value at A is B, i.e. (*A) == B. Hence A points to an array of integers. In your question, arr is similar to A.

Similarly, in int* (*C) [8], C is a pointer to an array of pointers to integer.

Upvotes: 0

Luis Colorado
Luis Colorado

Reputation: 12708

As a rule of thumb, right unary operators (like [], (), etc) take preference over left ones. So, int *(*ptr)()[]; would be a pointer that points to a function that returns an array of pointers to int (get the right operators as soon as you can as you get out of the parenthesis)

Upvotes: 3

Nikhil
Nikhil

Reputation: 11

In pointer to an integer if pointer is incremented then it goes next integer.

in array of pointer if pointer is incremented it jumps to next array

Upvotes: -9

simal
simal

Reputation: 21

I think we can use the simple rule ..

example int * (*ptr)()[];
start from ptr 

" ptr is a pointer to " go towards right ..its ")" now go left its a "(" come out go right "()" so " to a function which takes no arguments " go left "and returns a pointer " go right "to an array" go left " of integers "

Upvotes: 2

Sunil bn
Sunil bn

Reputation: 291

int *a[4]; // Array of 4 pointers to int

int (*a)[4]; //a is a pointer to an integer array of size 4

int (*a[8])[5]; //a is an array of pointers to integer array of size 5 

Upvotes: 29

Byron Formwalt
Byron Formwalt

Reputation: 51

typedef int (*PointerToIntArray)[];
typedef int *ArrayOfIntPointers[];

Upvotes: 5

Mehrdad Afshari
Mehrdad Afshari

Reputation: 422172

int* arr[8]; // An array of int pointers.
int (*arr)[8]; // A pointer to an array of integers

The third one is same as the first.

The general rule is operator precedence. It can get even much more complex as function pointers come into the picture.

Upvotes: 479

Related Questions