Reputation: 123
I am working with VC++ 2005 I have overloaded the new and delete operators. All is fine.
My question is related to some of the magic VC++ is adding to the memory allocation.
When I use the C++ call:
data = new _T [size];
The return (for example) from the global memory allocation is 071f2ea0 but data is set to 071f2ea4
When overloaded delete [] is called the 071f2ea0 address is passed in.
Another note is when using something like:
data = new _T;
both data an the return from the global memory allocation are the same.
I am pretty sure Microsoft is adding something at the head of the memory allocation to use for book keeping. My question is, does anyone know of the rules Microsoft is using.
I want to pass in the value of "data" into some memory testing routines so I need to get back to the original memory reference from the global allocation call.
I could assume the 4 byte are an index but I wanted to make sure. I could easily be a flag plus offset, or count or and index into some other table, or just an alignment to cache line of the CPU. I need to find out for sure. I have not been able to find any references to outline the details.
I also think on one of my other runs that the offset was 6 bytes not 4
Upvotes: 3
Views: 1611
Reputation: 55445
The 4 bytes most likely contains the total number of objects in the allocation so delete [] will be able to loop over all objects in the array calling their destructor..
To get back the original address, you could keep a lookup-table keyed on address / 16, which stores the base address and length. This will enable you to find the original allocation. You need to ensure that your allocation+4 doesn't cross a 16-byte boundary, however.
EDIT: I went ahead and wrote a test program that creates 50 objects with a destructor via new, and calls delete []. The destructor just calls printf, so it won't be optimized away.
#include <stdio.h>
class MySimpleClass
{
public:
~MySimpleClass() {printf("Hi\n");}
};
int main()
{
MySimpleClass* arr = new MySimpleClass[50];
delete [] arr;
return 0;
}
The partial disassembly is below, cleaned up to be a bit more legible. As you can see, VC++ is storing array count in the initial 4 byes.
; Allocation
mov ecx, 36h ; Size of allocation
call scratch!operator new
test rax,rax ; Don't write 4 bytes if NULL.
je scratch!main+0x25
mov dword ptr [rax],32h ; Store 50 in first 4 bytes
add rax,4 ; Increment pointer by 4
; Free
lea rdi,[rax-4] ; Grab previous 4 bytes of allocation
mov ebx,dword ptr [rdi] ; Store in loop counter
jmp StartLoop ; Jump to beginning of loop
Loop:
lea rcx,[scratch!`string' (00000000`ffe11170)] ; 1st param to printf
call qword ptr [scratch!_imp_printf; Destructor
StartLoop:
sub ebx,1 ; Decrement loop counter
jns Loop ; Loop while not negative
This book keeping is distinct from the book keeping that malloc or HeapAlloc do. Those allocators don't care about objects and arrays. They only see blobs of memory with a total size. VC++ can't query the heap manager for the total size of the allocation because that would mean that the heap manager would be bound to allocate a block exactly the size that you requested. The heap manager shouldn't have this limitation - if you ask for 240 bytes to allocate for 20 12 byte objects, it should be free to return a 256 byte block that it has immediately available.
Upvotes: 4
Reputation: 123
The finial answer is:
When you do a malloc
(which new uses under the hoods) allocates more memory than needed for the system to manage memory. This debug information is not what I am interested. What I am interested is the difference between using the return from malloc
on a C++ array allocation.
What I have been able to determine is sometimes the C++ adds/uses 4 additional byte to keep count of the objects being allocated. The twist is these 4 bytes are only added if the objects being allocated require being destructed.
So given:
void* _cdecl operator new(size_t size)
{
void *ptr = malloc(size);
return(ptr);
}
for the case of:
object * data = new object [size]
data will be ptr plus 4 bytes (assuming object required a destructor)
while:
char *data = new char [size]
data will equal ptr because no destructor is required.
Again, I am not interested in the memory tracking malloc
adds to manage memory.
Upvotes: 0
Reputation: 41519
For sure, memory allocation does need some bookkeeping info stored together with the actual memory.
Next to that, heap allocated blocks will also be 'decorated' with some magic values, used to easily detect buffer overruns, double deletion, ... Take a look at this CodeGuru site for more info. If you want to know the last of heap debugging, take a look at the msdn documentation.
Upvotes: 0
Reputation: 170569
The 4 bytes offset is for the number of elements. When delete[] is invoked it is necessary to know the exact number of elements to be able to call the destructors for exactly the necessary number of objects.
Since the memory allocator could have returned a bigger block than necessary for storing all the objects the only sure way to know the number of elements is to store it in the beginning of the block.
Upvotes: 1