Reputation: 2573
I have an integer like 1191223 and I want to iterate over the digits. I am not sure how to do this in C, is there any easy way to do this?
Thanks.
Upvotes: 16
Views: 62845
Reputation: 26
For my purposes the following short code did the trick.
Having a an integer variable the_integer, and an integer variable sum_of_digits initialized. (line 1) You could do the following:
1) Convert the integer variable to a variable of type string with use of the std::to_string(int) function.
2) Iterate of the characters of the resulting string. for(char& c: str::to_string(the_integer))
3) To convert the characters back to integers use c -'0' . For this solution take a look at the discussion in (Convert char to int in C and C++).
4) .. and adding them the digits together: sum_of_digits += c-'0'
*) you can then print your variables: lines 3 and 4.
int the_integer = 123456789; int sum_of_digits;
for (char& c: std::to_string(the_integer)) {sum_of_digits += c-'0';}
std::cout << "Integer: " << the_integer << std::endl;
std::cout << "Sum of Digits << sum_of_digits << std::endl;
Note that std::to_string() has some notes, please consult the c++ references to see if the code is still relevant for your purposes.
Upvotes: 1
Reputation: 29991
Something like this:
char data[128];
int digits = 1191223;
sprintf(data, "%d", digits);
int length = strlen(data);
for(int i = 0; i < length; i++) {
// iterate through each character representing a digit
}
Notice that if you use an octal number like 0100
you also need to change the sprintf(data, "%d", digits);
to sprintf(data, "%o", digits);
.
Upvotes: 2
Reputation: 32502
In the following I assume you mean decimal digits (base 10). Probably you are able to adapt the solutions to other numeral systems by substituting the 10
s.
Note, that the modulo operation is a tricky thing concerning negative operands. Therefore I have chosen the data type to be an unsigned integer.
If you want to process the least significant digit first, you could try the following untested approach:
uint32_t n = 1191223;
do {
uint32_t digit = n%10;
// do something with digit
}
while (n/=10);
If you prefer to walk through the digits starting from the most significant digit, you could try to adapt the following untested code:
uint32_t n = 1191223;
#define MAX_DIGITS 10 // log10((double)UINT32_MAX)+1
uint32_t div = pow(10, MAX_DIGITS);
// skip the leading zero digits
while ( div && !(n/div) ) div/=10;
if ( !div ) div = 10; // allow n being zero
do {
uint32_t digit = (n/div)%10;
// do something with digit
}
while (div/=10);
Upvotes: 5
Reputation: 13914
Forwards, or backwards?
Assuming a positive integer:
unsigned int n = 1191223;
while (n != 0) {
doSomething (n % 10);
n /= 10;
}
…will work smallest to largest, or…
EDIT I'd forgotten all about this non-working solution I had here. Note that Very Smart People™ seem to use the smallest-to-largest iteration consistently (both Linux kernel and GLibC's printf
, for example, just iterate backwards) but here's a lousy way to do it if you really don't want to use snprintf
for some reason…
int left_to_right (unsigned int n) {
unsigned int digit = 0;
if (0 == n) {
doSomething (0);
} else {
digit = pow(10, 1.0+ floor(log10(n)));
while (digit /= 10) {
doSomething ( (n / digit) % 10 );
}
}
}
I assume that it's very silly to assume that you have log10
and pow
but not snprintf
, so an alternate plan would be
int left_to_right_fixed_max (unsigned int n) {
unsigned int digit = 1000000000; /* make this very big */
unsigned int n10 = 10 * n;
if (0 == n) {
doSomething (0);
} else {
while (digit > n10) { digit /= 10; }
while (digit /= 10) {
doSomething ( (n / digit) % 10 );
}
}
}
… or, if you really don't have hardware multiply/divide, you can resort to using a table of powers of ten.
int left_to_right (unsigned int n) {
static const unsigned int digit [] =
{ 1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000 /* make this very big */
};
static const unsigned char max_place = 10;
/* length of the above array */
unsigned char decimal;
unsigned char place;
unsigned char significant = 0; /* boolean */
if (0 == n) {
doSomething (0);
} else {
place = max_place;
while (place--) {
decimal = 0;
while (n >= digit[place]) {
decimal++;
n -= digit[place];
}
if (decimal | significant) {
doSomething (decimal);
significant |= decimal;
}
}
}
}
…which I have adapted from http://www.piclist.com/techref/language/ccpp/convertbase.htm into a somewhat more general-purpose version.
Upvotes: 19
Reputation: 16597
void access_digits(int n)
{
int digit;
if (n < 0) n = -n;
do {
digit = n % 10;
/* Here you can do whatever you
want to do with the digit */
} while ((n/=10) > 0);
}
Upvotes: 2
Reputation: 13994
You can use sprintf()
to convert it into a char
array, and then iterate through that, like so (untested, just to get you started):
int a = 1191223;
char arr[16];
int rc = sprintf(arr, "%d", a);
if (rc < 0) {
// error
}
for (int i = 0; i < rc; i++) {
printf("digit %d = %d\n", i, arr[i]);
}
Upvotes: 2
Reputation: 121609
Off the top of my head: "i % 100000", "i % 100000", ...
A recursive solution would let you start from "i%10".
Upvotes: 0
Reputation: 25621
A hackish way is to convert this to string (see strtol) and then reconvert this to a number.
you could use something like character you want - '0'
Upvotes: 0
Reputation: 36049
You want to iterate over base-10 digits, but an integer has no concept of arabic notation and digits. Convert it to a string first:
int i = 1191223;
char buffer[16];
char *j;
snprintf(buffer, 16, "%i", i);
for ( j = buffer; *j; ++j ) { /* digit is in *j - '0' */ }
Upvotes: 3