drbunsen
drbunsen

Reputation: 10709

How to pivot/cross-tab data in Python 3?

What is the best solution to pivot/cross-tab tables in Python 3? Is there a built-in function that will do this? Ideally, I'm looking for a Python 3 solution that does not have external dependencies. For example, given a nested list:

nl = [["apples", 2 "New York"], 
      ["peaches", 6, "New York"],
      ["apples", 6, "New York"],
      ["peaches", 1, "Vermont"]]  

I would like to be able to rearrange rowed data and groupby fields:

             apples    peaches
New York        2         6
Vermont         6         1

The above is a trivial example, but is there a solution that would be easier than using itertools.groupby everytime a pivot is desired? Ideally, the solution would allow rowed data to be pivoted on any column. I was debating about using pandas, but it is an external library and only has limited Python 3 support.

Upvotes: 3

Views: 3198

Answers (2)

John Machin
John Machin

Reputation: 83002

Here is some simple code. Providing row/column/grand totals is left as an exercise for the reader.

class CrossTab(object):

    def __init__(
        self,
        missing=0, # what to return for an empty cell.
                   # Alternatives: '', 0.0, None, 'NULL'
        ):
        self.missing = missing
        self.col_key_set = set()
        self.cell_dict = {}
        self.headings_OK = False

    def add_item(self, row_key, col_key, value):
        self.col_key_set.add(col_key)
        try:
            self.cell_dict[row_key][col_key] += value
        except KeyError:
            try:
                self.cell_dict[row_key][col_key] = value
            except KeyError:
                self.cell_dict[row_key] = {col_key: value}

    def _process_headings(self):
        if self.headings_OK:
            return
        self.row_headings = list(sorted(self.cell_dict.keys()))
        self.col_headings = list(sorted(self.col_key_set))
        self.headings_OK = True

    def get_col_headings(self):
        self._process_headings()
        return self.col_headings

    def generate_row_info(self):
        self._process_headings()
        for row_key in self.row_headings:
            row_dict = self.cell_dict[row_key]
            row_vals = [
                row_dict.get(col_key, self.missing)
                for col_key in self.col_headings
                ]
            yield row_key, row_vals

if __name__ == "__main__":

    data = [["apples", 2, "New York"], 
      ["peaches", 6, "New York"],
      ["apples", 6, "New York"],
      ["peaches", 1, "Vermont"]]  

    ctab = CrossTab(missing='uh-oh')
    for s in data:
        ctab.add_item(row_key=s[2], col_key=s[0], value=s[1])
    print()
    print('Column headings:', ctab.get_col_headings())
    for row_heading, row_values in ctab.generate_row_info():
        print(repr(row_heading), row_values)

Output:

Column headings: ['apples', 'peaches']
'New York' [8, 6]
'Vermont' ['uh-oh', 1]

See also this answer.

And this one, which I'd forgotten about.

Upvotes: 1

bukzor
bukzor

Reputation: 38512

itertools.groupby was exactly made for this problem. You will be hard-pressed to find something better, especially within the standard library.

Upvotes: 0

Related Questions