Reputation: 6410
I am trying to duplicate each column from data frame and move it to a randomly located point within 1-3 columns and do it for each column in the data frame. I want columns to move AT LEAST one space to the left or right. Of course sample(data)
reorders columns randomly, but my attempts to put it in a loop are embarrassingly bad (I admit I skipped majority of linear algebra classes, damn...). Below is an example data:
dat <- read.table(textConnection(
"-515.5718 94.33423 939.6324 -502.9918 -75.14629 946.6926
-515.2283 96.10239 939.5687 -503.1425 -73.39015 946.6360
-515.0044 97.68119 939.4177 -503.4021 -71.79252 946.6909
-514.7430 99.59141 939.3976 -503.6645 -70.08514 946.6887
-514.4449 101.08511 939.2342 -503.9207 -68.48133 946.7183
-514.2769 102.29453 939.0013 -504.2665 -67.04509 946.7809
-513.9294 104.02753 938.9436 -504.4703 -65.34361 946.7899
-513.5900 105.49624 938.7684 -504.7405 -63.75965 946.7991"
),header=F,as.is=T)
sample(dat)#random columns position
Upvotes: 3
Views: 368
Reputation: 162311
I should probably wait to post this until I have time to comment it up, and discuss some of the ambiguities in the problem as currently specified in the comments above. But since I won't be able to do that, possibly for a while, I thought I'd give you code for a solution that you can examine yourself.
# Create a function that generates acceptable permutations of the data
getPermutation <- function(blockSize, # number of columns/block
nBlock, # number of blocks of data
fromBlocks) { # indices of blocks to be moved
X <- unique(as.vector(outer(fromBlocks, c(-2,-1,1,2), "+")))
# To remove nonsensical indices like 0 or -1
X <- X[X %in% seq.int(nBlock)]
while({toBlocks <- sample(X, size = length(fromBlocks))
max(abs(toBlocks - fromBlocks)) > 2 | min(abs(toBlocks - fromBlocks)) < 1
}) NULL
A <- seq.int(nBlock)
A[toBlocks] <- fromBlocks
A[fromBlocks] <- toBlocks
blockColIndices <-
lapply(seq.int(nBlock) - 1,
function(X) {
seq(from = X * blockSize + 1,
by = 1,
length.out = blockSize)
})
unlist(blockColIndices[A])
}
# Create an example dataset, a 90 column data.frame
dat <- as.data.frame(matrix(seq.int(90*4), ncol=90))
# Call the function for a data frame with 30 3-column blocks
# within which you want to move blocks 2, 14, and 14.
index <- getPermutation(3, 30, c(2, 14, 15))
newdat <- dat[index]
Upvotes: 1
Reputation: 162311
How about this brute-force but plenty-fast solution?
It tries out different permutations of the columns until it finds one in which each column is moved at least 1, and not more than 3 columns to left or right. When it finds such a permutation, the test in the final line of the while()
call evaluates to FALSE
, terminating the loop and leaving the variable x
containing the acceptable permutation.
n <- ncol(dat)
while({x <- sample(n) # Proposed new column positions
y <- seq_len(n) # Original column positions
max(abs(x - y)) > 3 | min(abs(x - y)) == 0
}) NULL
dat[x]
Upvotes: 3