Reputation:
I have an object of type 'numpy.ndarray', called "myarray", that when printed to the screen using python's "print", looks like hits
[[[ 84 0 213 232] [153 0 304 363]]
[[ 33 0 56 104] [ 83 0 77 238]]
[[ 0 0 9 61] [ 0 0 2 74]]]
"myarray" is made by another library. The value of myarray.shape
equals (3, 2). I expected this to be a 3dimensional array, with three indices. When I try to make this structure myself, using:
second_array = array([[[84, 0, 213, 232], [153, 0, 304, 363]],
[[33, 0, 56, 104], [83, 0, 77, 238]],
[[0, 0, 9, 61], [0, 0, 2, 74]]])
I get that second_array.shape
is equal to (3, 2, 4)
, as expected. Why is there this difference? Also, given this, how can I reshape "myarray" so that the two columns are merged, i.e. so that the result is:
[[[ 84 0 213 232 153 0 304 363]]
[[ 33 0 56 104 83 0 77 238]]
[[ 0 0 9 61 0 0 2 74]]]
Edit: to clarify, I know that in the case of second_array
, I can do second_array.reshape((3,8))
. But how does this work for the ndarray which has the format of myarray
but does not have a 3d index?
myarray.dtype
is "object
" but can be changed to be ndarray too.
Edit 2: Getting closer, but still cannot quite get the ravel
/flatten
followed by reshape. I have:
a = array([[1, 2, 3],
[4, 5, 6]])
b = array([[ 7, 8, 9],
[10, 11, 12]])
arr = array([a, b])
I try:
arr.ravel().reshape((2,6))
But this gives [[1, 2, 3, 4, 5, 6], ...]
and I wanted [[1, 2, 3, 7, 8, 9], ...]
. How can this be done?
thanks.
Upvotes: 2
Views: 1802
Reputation: 879331
Indeed, ravel
and hstack
can be useful tools for reshaping arrays:
import numpy as np
myarray = np.empty((3,2),dtype = object)
myarray[:] = [[np.array([ 84, 0, 213, 232]), np.array([153, 0, 304, 363])],
[np.array([ 33, 0, 56, 104]), np.array([ 83, 0, 77, 238])],
[np.array([ 0, 0, 9, 61]), np.array([ 0, 0, 2, 74])]]
myarray = np.hstack(myarray.ravel()).reshape(3,2,4)
print(myarray)
# [[[ 84 0 213 232]
# [153 0 304 363]]
# [[ 33 0 56 104]
# [ 83 0 77 238]]
# [[ 0 0 9 61]
# [ 0 0 2 74]]]
myarray = myarray.ravel().reshape(3,8)
print(myarray)
# [[ 84 0 213 232 153 0 304 363]
# [ 33 0 56 104 83 0 77 238]
# [ 0 0 9 61 0 0 2 74]]
Regarding Edit 2:
import numpy as np
a = np.array([[1, 2, 3],
[4, 5, 6]])
b = np.array([[ 7, 8, 9],
[10, 11, 12]])
arr = np.array([a, b])
print(arr)
# [[[ 1 2 3]
# [ 4 5 6]]
# [[ 7 8 9]
# [10 11 12]]]
Notice that
In [45]: arr[:,0,:]
Out[45]:
array([[1, 2, 3],
[7, 8, 9]])
Since you want the first row to be [1,2,3,7,8,9]
, the above shows that you want the second axis to be the first axis. This can be accomplished with the swapaxes
method:
print(arr.swapaxes(0,1).reshape(2,6))
# [[ 1 2 3 7 8 9]
# [ 4 5 6 10 11 12]]
Or, given a
and b
, or equivalently, arr[0]
and arr[1]
, you could form arr
directly with the hstack
method:
arr = np.hstack([a, b])
# [[ 1 2 3 7 8 9]
# [ 4 5 6 10 11 12]]
Upvotes: 3