Reputation: 77116
I cannot find the right incantation of Reduce
, Recall
, lapply
to perform the following task. Consider the following function,
bisect.df <- function(d){
n <- ncol(d)
if(n%%2) n <- n-1 # drop one col if odd number
ind <- sample(n)[seq.int(n/2)] # split randomly both parts
list(first=d[, ind],
second=d[, -ind])
}
given a data.frame
, it returns a list of two children data.frames
of equal ncol
extracted randomly from their parent. I wish to apply this function recursively to the offsprings down to a given level, say 3 generations. I can do it trivially one generation at a time,
bisect.list <- function(l){
unlist(lapply(l, bisect.df), recursive=FALSE)
}
but how do I call this recursively, say N=3
times?
Here's a test sample to play with
d <- data.frame(matrix(rnorm(16*5), ncol=16))
step1 <- bisect.list(list(d))
step2 <- bisect.list(step1)
step3 <- bisect.list(step2)
str(list(step1, step2, step3))
Upvotes: 3
Views: 1197
Reputation: 32401
Here is a recursive solution: the idea is to add an argument that counts the number of remaining recursive calls. (But it does exactly the same thing as the loop version.)
f <- function( d, n=3 ) {
if( is.data.frame( d ) )
return( f( list(d), n ) )
if( n == 0 )
return( d )
result <- lapply( d, bisect.df )
result <- unlist( result, recursive=FALSE )
result <- f( result, n-1 )
result
}
d <- as.data.frame( t(1:20) )
f(d)
It may be easier to just take the column indices at random and build all the sub-data.frames at once.
Upvotes: 2
Reputation: 43265
bisect.list <- function(l,n){
for(i in 1:n) {
l <- unlist(lapply(l, bisect.df), recursive=FALSE)
}
return(l)
}
not sure how to do it without a loop...
Upvotes: 2