Reputation: 28129
I have a data set that I'm trying to use rfe()
from the caret
package in R on.
x is the prices I'm trying to predict.
y is the variables I'm using to make the prediction.
I can't get rfe to stop giving the following error message:
> lmProfile2 <- rfe(x1,y1,
+ sizes = subsets,
+ rfeControl = ctrl)
Error in rfe.default(x1, y1, sizes = subsets, rfeControl = ctrl) :
there should be the same number of samples in x and y
Here's some info:
> class(x1)
[1] "data.frame"
> class(y1)
[1] "data.frame"
> nrow(x1)
[1] 500
> nrow(y1)
[1] 500
> ncol(x1)
[1] 68
> ncol(y1)
[1] 1
Also:
> y1 <- data.frame(y = tiny4[,2])
> x1 <- data.frame(tiny4[,-c(1,2)])
> subsets <- c(5,10)
>
> ctrl <- rfeControl(functions = lmFuncs,
+ method = "cv",
+ verbose = FALSE,
+ returnResamp = "final")
>
Any idea why I'm getting the message?
Upvotes: 4
Views: 3154
Reputation: 1
It should be factor and vector:
as.factor(noquote(as.vector(t(df[,14]))))
In my case column 14 is a class in df.
Upvotes: 0
Reputation: 22588
y
should be a numeric or factor vector. Here you have it as a data frame. Compare:
> rfe(data.frame(matrix(rnorm(100*3), ncol=3)), sample(2, 100, replace=T), sizes=1:3, rfeControl=rfeControl(functions=lmFuncs))
Recursive feature selection
Outer resampling method: Bootstrap (25 reps)
Resampling performance over subset size:
Variables RMSE Rsquared RMSESD RsquaredSD Selected
1 0.5154 0.02120 0.02421 0.02752 *
2 0.5162 0.02295 0.02722 0.03204
3 0.5162 0.02295 0.02722 0.03204
The top 1 variables (out of 1):
X3
vs.
> rfe(data.frame(matrix(rnorm(100*3), ncol=3)), data.frame(sample(2, 100, replace=T)), sizes=1:3, rfeControl=rfeControl(functions=lmFuncs))
Error in rfe.default(data.frame(matrix(rnorm(100 * 3), ncol = 3)), data.frame(sample(2, :
there should be the same number of samples in x and y
Upvotes: 5